ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.18149
  4. Cited By

First Finish Search: Efficient Test-Time Scaling in Large Language Models

23 May 2025
Aradhye Agarwal
Ayan Sengupta
Tanmoy Chakraborty
    ReLMRALMALMLRM
ArXiv (abs)PDFHTML

Papers citing "First Finish Search: Efficient Test-Time Scaling in Large Language Models"

21 / 21 papers shown
Title
Phi-4-reasoning Technical Report
Phi-4-reasoning Technical Report
Marah Abdin
Sahaj Agarwal
Ahmed Hassan Awadallah
Vidhisha Balachandran
Harkirat Singh Behl
...
Vaishnavi Shrivastava
Vibhav Vineet
Yue Wu
Safoora Yousefi
Guoqing Zheng
ReLMLRM
197
15
0
30 Apr 2025
Thinking Machines: A Survey of LLM based Reasoning Strategies
Dibyanayan Bandyopadhyay
Soham Bhattacharjee
Asif Ekbal
LRMELM
84
10
0
13 Mar 2025
Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems
Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems
Hao Peng
Yunjia Qi
Xiaozhi Wang
Zijun Yao
Bin Xu
Lei Hou
Juanzi Li
ALMLRM
99
7
0
26 Feb 2025
S*: Test Time Scaling for Code Generation
S*: Test Time Scaling for Code Generation
Dacheng Li
Shiyi Cao
Chengkun Cao
Xiuyu Li
Shangyin Tan
Kurt Keutzer
Jiarong Xing
Joseph E. Gonzalez
Ion Stoica
LRMVLM
100
16
0
21 Feb 2025
MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for Code Correctness Evaluation
MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for Code Correctness Evaluation
Yutong Wang
Pengliang Ji
Chaoqun Yang
Kaixin Li
Ming Hu
Jiaoyang Li
Guillaume Sartoretti
LRMELM
87
6
0
18 Feb 2025
Learning to Reason from Feedback at Test-Time
Learning to Reason from Feedback at Test-Time
Yanyang Li
Michael R. Lyu
Liwei Wang
LRM
106
4
0
16 Feb 2025
Step Back to Leap Forward: Self-Backtracking for Boosting Reasoning of Language Models
Step Back to Leap Forward: Self-Backtracking for Boosting Reasoning of Language Models
Xiao-Wen Yang
Xuan-Yi Zhu
Wen-Da Wei
Ding-Chu Zhang
Jie-Jing Shao
Zhi Zhou
Lan-Zhe Guo
Yu-Feng Li
KELMLRM
52
8
0
06 Feb 2025
CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Jianfeng Pan
Senyou Deng
Shaomang Huang
KELMLRMAI4CE
72
5
0
04 Feb 2025
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI
Daya Guo
Dejian Yang
Haowei Zhang
Junxiao Song
...
Shiyu Wang
S. Yu
Shunfeng Zhou
Shuting Pan
S.S. Li
ReLMVLMOffRLAI4TSLRM
380
1,970
0
22 Jan 2025
T1: Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling
T1: Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling
Zhenyu Hou
Xin Lv
Rui Lu
Jing Zhang
Yongqian Li
Zijun Yao
Juanzi Li
J. Tang
Yuxiao Dong
OffRLLRMReLM
140
33
0
20 Jan 2025
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Bradley Brown
Jordan Juravsky
Ryan Ehrlich
Ronald Clark
Quoc V. Le
Christopher Ré
Azalia Mirhoseini
ALMLRM
245
325
0
03 Jan 2025
A Simple Model of Inference Scaling Laws
A Simple Model of Inference Scaling Laws
Noam Levi
LRM
71
13
0
21 Oct 2024
Scaling LLM Test-Time Compute Optimally can be More Effective than
  Scaling Model Parameters
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Charlie Snell
Jaehoon Lee
Kelvin Xu
Aviral Kumar
LRM
193
692
0
06 Aug 2024
From Decoding to Meta-Generation: Inference-time Algorithms for Large
  Language Models
From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
Sean Welleck
Amanda Bertsch
Matthew Finlayson
Hailey Schoelkopf
Alex Xie
Graham Neubig
Ilia Kulikov
Zaid Harchaoui
113
75
0
24 Jun 2024
OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
Zhen Huang
Zengzhi Wang
Shijie Xia
Pengfei Liu
ELM
101
11
0
24 Jun 2024
Monte Carlo Tree Search Boosts Reasoning via Iterative Preference
  Learning
Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning
Yuxi Xie
Anirudh Goyal
Wenyue Zheng
Min-Yen Kan
Timothy Lillicrap
Kenji Kawaguchi
Michael Shieh
ReLMLRM
114
126
0
01 May 2024
Stream of Search (SoS): Learning to Search in Language
Stream of Search (SoS): Learning to Search in Language
Kanishk Gandhi
Denise Lee
Gabriel Grand
Muxin Liu
Winson Cheng
Archit Sharma
Noah D. Goodman
RALMAIFinLRM
79
68
0
01 Apr 2024
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
David Rein
Betty Li Hou
Asa Cooper Stickland
Jackson Petty
Richard Yuanzhe Pang
Julien Dirani
Julian Michael
Samuel R. Bowman
AI4MHELM
115
728
0
20 Nov 2023
Don't throw away your value model! Generating more preferable text with
  Value-Guided Monte-Carlo Tree Search decoding
Don't throw away your value model! Generating more preferable text with Value-Guided Monte-Carlo Tree Search decoding
Jiacheng Liu
Andrew Cohen
Ramakanth Pasunuru
Yejin Choi
Hannaneh Hajishirzi
Asli Celikyilmaz
85
32
0
26 Sep 2023
Planning with Large Language Models for Code Generation
Planning with Large Language Models for Code Generation
Shun Zhang
Zhenfang Chen
Songlin Yang
Mingyu Ding
J. Tenenbaum
Chuang Gan
93
160
0
09 Mar 2023
Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence
  Models
Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models
Ashwin K. Vijayakumar
Michael Cogswell
Ramprasaath R. Selvaraju
Q. Sun
Stefan Lee
David J. Crandall
Dhruv Batra
91
555
0
07 Oct 2016
1