ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17646
  4. Cited By

Understanding Pre-training and Fine-tuning from Loss Landscape Perspectives

23 May 2025
Huanran Chen
Yinpeng Dong
Zeming Wei
Yao Huang
Yichi Zhang
Hang Su
Jun Zhu
    MoMe
ArXivPDFHTML

Papers citing "Understanding Pre-training and Fine-tuning from Loss Landscape Perspectives"

10 / 60 papers shown
Title
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T. Garipov
Pavel Izmailov
Dmitrii Podoprikhin
Dmitry Vetrov
A. Wilson
UQCV
47
746
0
27 Feb 2018
Visualizing the Loss Landscape of Neural Nets
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
216
1,873
0
28 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
181
11,962
0
19 Jun 2017
Nearly-tight VC-dimension and pseudodimension bounds for piecewise
  linear neural networks
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks
Peter L. Bartlett
Nick Harvey
Christopher Liaw
Abbas Mehrabian
103
427
0
08 Mar 2017
Exploring loss function topology with cyclical learning rates
Exploring loss function topology with cyclical learning rates
L. Smith
Nicholay Topin
26
23
0
14 Feb 2017
Neural Machine Translation of Rare Words with Subword Units
Neural Machine Translation of Rare Words with Subword Units
Rico Sennrich
Barry Haddow
Alexandra Birch
131
7,683
0
31 Aug 2015
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
199
583
0
27 Feb 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
122
18,922
0
20 Dec 2014
Qualitatively characterizing neural network optimization problems
Qualitatively characterizing neural network optimization problems
Ian Goodfellow
Oriol Vinyals
Andrew M. Saxe
ODL
73
519
0
19 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
101
14,831
1
21 Dec 2013
Previous
12