ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17614
  4. Cited By

PathoSCOPE: Few-Shot Pathology Detection via Self-Supervised Contrastive Learning and Pathology-Informed Synthetic Embeddings

23 May 2025
Sinchee Chin
Yinuo Ma
Xiaochen Yang
Jing-Hao Xue
Wenming Yang
    SSL
    MedIm
ArXivPDFHTML

Papers citing "PathoSCOPE: Few-Shot Pathology Detection via Self-Supervised Contrastive Learning and Pathology-Informed Synthetic Embeddings"

7 / 7 papers shown
Title
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
I. Lagogiannis
Felix Meissen
Georgios Kaissis
Daniel Rueckert
OOD
103
19
0
01 Mar 2023
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via
  Conditional Normalizing Flows
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows
Denis A. Gudovskiy
Shun Ishizaka
Kazuki Kozuka
72
400
0
27 Jul 2021
Mean-Shifted Contrastive Loss for Anomaly Detection
Mean-Shifted Contrastive Loss for Anomaly Detection
Tal Reiss
Yedid Hoshen
30
117
0
07 Jun 2021
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
59
827
0
17 Nov 2020
MADGAN: unsupervised Medical Anomaly Detection GAN using multiple
  adjacent brain MRI slice reconstruction
MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction
Changhee Han
L. Rundo
K. Murao
T. Noguchi
Yuki Shimahara
Z. '. Milacski
S. Koshino
Evis Sala
Hideki Nakayama
Shinichi Satoh
MedIm
105
164
0
24 Jul 2020
Towards Visually Explaining Variational Autoencoders
Towards Visually Explaining Variational Autoencoders
Wenqian Liu
Runze Li
Meng Zheng
Srikrishna Karanam
Ziyan Wu
B. Bhanu
Richard J. Radke
Mario Sznaier
84
217
0
18 Nov 2019
Identifying the Best Machine Learning Algorithms for Brain Tumor
  Segmentation, Progression Assessment, and Overall Survival Prediction in the
  BRATS Challenge
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Spyridon Bakas
M. Reyes
Andras Jakab
Stefan Bauer
Markus Rempfler
...
Jayashree Kalpathy-Cramer
Keyvan Farahani
Christos Davatzikos
Koen van Leemput
Bjoern Menze
109
1,623
0
05 Nov 2018
1