ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17037
  4. Cited By
Prompt Engineering: How Prompt Vocabulary affects Domain Knowledge

Prompt Engineering: How Prompt Vocabulary affects Domain Knowledge

10 May 2025
Dimitri Schreiter
ArXiv (abs)PDFHTML

Papers citing "Prompt Engineering: How Prompt Vocabulary affects Domain Knowledge"

25 / 25 papers shown
Title
Paraphrase Types Elicit Prompt Engineering Capabilities
Paraphrase Types Elicit Prompt Engineering Capabilities
Jan Philip Wahle
Terry Ruas
Yang Xu
Bela Gipp
147
10
0
28 Jun 2024
APrompt4EM: Augmented Prompt Tuning for Generalized Entity Matching
APrompt4EM: Augmented Prompt Tuning for Generalized Entity Matching
Yikuan Xia
Jiazun Chen
Xinchi Li
Jun Gao
VLM
120
3
0
08 May 2024
Hallucination is Inevitable: An Innate Limitation of Large Language Models
Hallucination is Inevitable: An Innate Limitation of Large Language Models
Ziwei Xu
Sanjay Jain
Mohan S. Kankanhalli
HILMLRM
193
261
0
22 Jan 2024
Understanding LLMs: A Comprehensive Overview from Training to Inference
Understanding LLMs: A Comprehensive Overview from Training to Inference
Yi-Hsueh Liu
Haoyang He
Tianle Han
Xu-Yao Zhang
Mengyuan Liu
...
Xintao Hu
Tuo Zhang
Ning Qiang
Tianming Liu
Bao Ge
SyDa
169
80
0
04 Jan 2024
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
David Rein
Betty Li Hou
Asa Cooper Stickland
Jackson Petty
Richard Yuanzhe Pang
Julien Dirani
Julian Michael
Samuel R. Bowman
AI4MHELM
201
745
0
20 Nov 2023
The language of prompting: What linguistic properties make a prompt
  successful?
The language of prompting: What linguistic properties make a prompt successful?
Alina Leidinger
R. Rooij
Ekaterina Shutova
96
45
0
03 Nov 2023
Unleashing the potential of prompt engineering in Large Language Models:
  a comprehensive review
Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
Banghao Chen
Zhaofeng Zhang
Nicolas Langrené
Shengxin Zhu
LLMAG
132
14
0
23 Oct 2023
Exploring the Relationship between LLM Hallucinations and Prompt
  Linguistic Nuances: Readability, Formality, and Concreteness
Exploring the Relationship between LLM Hallucinations and Prompt Linguistic Nuances: Readability, Formality, and Concreteness
Vipula Rawte
Prachi Priya
S.M. Towhidul Islam Tonmoy
M. M. Zaman
A. Sheth
Amitava Das
54
19
0
20 Sep 2023
Direct Preference Optimization: Your Language Model is Secretly a Reward
  Model
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
Rafael Rafailov
Archit Sharma
E. Mitchell
Stefano Ermon
Christopher D. Manning
Chelsea Finn
ALM
407
4,218
0
29 May 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALMPILM
1.8K
13,617
0
27 Feb 2023
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT
Jules White
Quchen Fu
Sam Hays
Michael Sandborn
Carlos Olea
Henry Gilbert
Ashraf Elnashar
Jesse Spencer-Smith
Douglas C. Schmidt
LLMAG
225
1,137
0
21 Feb 2023
Scaling Instruction-Finetuned Language Models
Scaling Instruction-Finetuned Language Models
Hyung Won Chung
Le Hou
Shayne Longpre
Barret Zoph
Yi Tay
...
Jacob Devlin
Adam Roberts
Denny Zhou
Quoc V. Le
Jason W. Wei
ReLMLRM
433
3,186
0
20 Oct 2022
Beyond the Imitation Game: Quantifying and extrapolating the
  capabilities of language models
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Aarohi Srivastava
Abhinav Rastogi
Abhishek Rao
Abu Awal Md Shoeb
Abubakar Abid
...
Zhuoye Zhao
Zijian Wang
Zijie J. Wang
Zirui Wang
Ziyi Wu
ELM
342
1,786
0
09 Jun 2022
Large Language Models are Zero-Shot Reasoners
Large Language Models are Zero-Shot Reasoners
Takeshi Kojima
S. Gu
Machel Reid
Yutaka Matsuo
Yusuke Iwasawa
ReLMLRM
677
4,563
0
24 May 2022
Super-NaturalInstructions: Generalization via Declarative Instructions
  on 1600+ NLP Tasks
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
Yizhong Wang
Swaroop Mishra
Pegah Alipoormolabashi
Yeganeh Kordi
Amirreza Mirzaei
...
Chitta Baral
Yejin Choi
Noah A. Smith
Hannaneh Hajishirzi
Daniel Khashabi
ELM
179
865
0
16 Apr 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLMALM
1.5K
13,330
0
04 Mar 2022
PromptSource: An Integrated Development Environment and Repository for
  Natural Language Prompts
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
Stephen H. Bach
Victor Sanh
Zheng-Xin Yong
Albert Webson
Colin Raffel
...
Khalid Almubarak
Xiangru Tang
Dragomir R. Radev
Mike Tian-Jian Jiang
Alexander M. Rush
VLM
373
357
0
02 Feb 2022
Training Verifiers to Solve Math Word Problems
Training Verifiers to Solve Math Word Problems
K. Cobbe
V. Kosaraju
Mohammad Bavarian
Mark Chen
Heewoo Jun
...
Jerry Tworek
Jacob Hilton
Reiichiro Nakano
Christopher Hesse
John Schulman
ReLMOffRLLRM
472
4,630
0
27 Oct 2021
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
  in Natural Language Processing
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
Pengfei Liu
Weizhe Yuan
Jinlan Fu
Zhengbao Jiang
Hiroaki Hayashi
Graham Neubig
VLMSyDa
487
4,055
0
28 Jul 2021
Prompt Programming for Large Language Models: Beyond the Few-Shot
  Paradigm
Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm
Laria Reynolds
Kyle McDonell
139
934
0
15 Feb 2021
Measuring Massive Multitask Language Understanding
Measuring Massive Multitask Language Understanding
Dan Hendrycks
Collin Burns
Steven Basart
Andy Zou
Mantas Mazeika
Basel Alomair
Jacob Steinhardt
ELMRALM
555
4,610
0
07 Sep 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
1.3K
42,823
0
28 May 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
710
4,962
0
23 Jan 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural
  Language Inference
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
542
1,629
0
21 Jan 2020
A Universal Part-of-Speech Tagset
A Universal Part-of-Speech Tagset
Slav Petrov
Dipanjan Das
Ryan T. McDonald
125
1,038
0
11 Apr 2011
1