ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17004
  4. Cited By
Guided Diffusion Sampling on Function Spaces with Applications to PDEs

Guided Diffusion Sampling on Function Spaces with Applications to PDEs

22 May 2025
Jiachen Yao
Abbas Mammadov
Julius Berner
Gavin Kerrigan
Jong Chul Ye
Kamyar Azizzadenesheli
A. Anandkumar
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Guided Diffusion Sampling on Function Spaces with Applications to PDEs"

33 / 33 papers shown
Title
EquiReg: Equivariance Regularized Diffusion for Inverse Problems
EquiReg: Equivariance Regularized Diffusion for Inverse Problems
Bahareh Tolooshams
Aditi Chandrashekar
Rayhan Zirvi
Abbas Mammadov
Jiachen Yao
Chuwei Wang
Anima Anandkumar
DiffM
49
0
0
29 May 2025
Stochastic Process Learning via Operator Flow Matching
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
151
2
0
10 Jan 2025
Geophysical inverse problems with measurement-guided diffusion models
Geophysical inverse problems with measurement-guided diffusion models
Matteo Ravasi
DiffM
75
2
0
10 Jan 2025
Operator Learning for Reconstructing Flow Fields from Sparse Measurements: an Energy Transformer Approach
Operator Learning for Reconstructing Flow Fields from Sparse Measurements: an Energy Transformer Approach
Qian Zhang
Dmitry Krotov
George Karniadakis
AI4CE
80
2
0
02 Jan 2025
A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations
A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations
Naveen Gupta
Medha Sawhney
Arka Daw
Youzuo Lin
Anuj Karpatne
MedImAI4CE
94
3
0
15 Oct 2024
Discretization Error of Fourier Neural Operators
Discretization Error of Fourier Neural Operators
S. Lanthaler
Andrew M. Stuart
Margaret Trautner
83
8
0
03 May 2024
Universal Functional Regression with Neural Operator Flows
Universal Functional Regression with Neural Operator Flows
Yaozhong Shi
Angela F. Gao
Zachary E. Ross
Kamyar Azizzadenesheli
89
4
0
03 Apr 2024
CoCoGen: Physically-Consistent and Conditioned Score-based Generative
  Models for Forward and Inverse Problems
CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems
Christian L. Jacobsen
Yilin Zhuang
Karthik Duraisamy
AI4CESyDaDiffM
79
22
0
16 Dec 2023
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks
  for Solving PDEs
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
Zhongkai Hao
J. Yao
Chang Su
Hang Su
Ziao Wang
...
Zeyu Xia
Yichi Zhang
Songming Liu
Lu Lu
Jun Zhu
PINN
88
34
0
15 Jun 2023
Functional Flow Matching
Functional Flow Matching
Gavin Kerrigan
Giosue Migliorini
Padhraic Smyth
74
18
0
26 May 2023
Infinite-Dimensional Diffusion Models
Infinite-Dimensional Diffusion Models
Jakiw Pidstrigach
Youssef Marzouk
Sebastian Reich
Sven Wang
102
13
0
20 Feb 2023
Score-based Diffusion Models in Function Space
Score-based Diffusion Models in Function Space
Jae Hyun Lim
Nikola B. Kovachki
Ricardo Baptista
Christopher Beckham
Kamyar Azizzadenesheli
...
Karsten Kreis
Jan Kautz
Christopher Pal
Arash Vahdat
Anima Anandkumar
DiffM
168
48
0
14 Feb 2023
Diffusion Generative Models in Infinite Dimensions
Diffusion Generative Models in Infinite Dimensions
Gavin Kerrigan
Justin Ley
Padhraic Smyth
DiffM
103
33
0
01 Dec 2022
Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model
Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model
Yinhuai Wang
Jiwen Yu
Jian Zhang
DiffM
113
458
0
01 Dec 2022
Diffusion Posterior Sampling for General Noisy Inverse Problems
Diffusion Posterior Sampling for General Noisy Inverse Problems
Hyungjin Chung
Jeongsol Kim
Michael T. McCann
M. Klasky
J. C. Ye
DiffM
111
857
0
29 Sep 2022
Improving Diffusion Models for Inverse Problems using Manifold
  Constraints
Improving Diffusion Models for Inverse Problems using Manifold Constraints
Hyungjin Chung
Byeongsu Sim
Dohoon Ryu
J. C. Ye
DiffMMedIm
118
471
0
02 Jun 2022
Elucidating the Design Space of Diffusion-Based Generative Models
Elucidating the Design Space of Diffusion-Based Generative Models
Tero Karras
M. Aittala
Timo Aila
S. Laine
DiffM
207
2,018
0
01 Jun 2022
Generative Adversarial Neural Operators
Generative Adversarial Neural Operators
Md Ashiqur Rahman
Manuel A. Florez
Anima Anandkumar
Zachary E. Ross
Kamyar Azizzadenesheli
GAN
75
40
0
06 May 2022
Denoising Diffusion Restoration Models
Denoising Diffusion Restoration Models
Bahjat Kawar
Michael Elad
Stefano Ermon
Jiaming Song
DiffM
278
842
0
27 Jan 2022
Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
  for Inverse Problems through Stochastic Contraction
Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction
Hyungjin Chung
Byeongsu Sim
Jong Chul Ye
MedImDiffM
117
354
0
09 Dec 2021
Physics-Informed Neural Operator for Learning Partial Differential
  Equations
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
121
421
0
06 Nov 2021
Seismic wave propagation and inversion with Neural Operators
Seismic wave propagation and inversion with Neural Operators
Yan Yang
Angela F. Gao
J. Castellanos
Zachary E. Ross
Kamyar Azizzadenesheli
R. Clayton
43
73
0
11 Aug 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
244
7,933
0
11 May 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
352
3,715
0
18 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,444
0
18 Oct 2020
Learning Mesh-Based Simulation with Graph Networks
Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff
Meire Fortunato
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
AI4CE
82
803
0
07 Oct 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
669
18,276
0
19 Jun 2020
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,150
0
08 Oct 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,954
0
12 Jul 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep
  Auto-Regressive Networks
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks
N. Geneva
N. Zabaras
AI4CE
69
275
0
13 Jun 2019
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
Jure Zbontar
Florian Knoll
Anuroop Sriram
Tullie Murrell
Zhengnan Huang
...
Erich Owens
C. L. Zitnick
M. Recht
D. Sodickson
Yvonne W. Lui
OOD
73
847
0
21 Nov 2018
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate
  Modeling and Uncertainty Quantification
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCVBDL
111
645
0
21 Jan 2018
Geometric MCMC for Infinite-Dimensional Inverse Problems
Geometric MCMC for Infinite-Dimensional Inverse Problems
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
56
143
0
20 Jun 2016
1