ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.16126
  4. Cited By
Robust Invariant Representation Learning by Distribution Extrapolation

Robust Invariant Representation Learning by Distribution Extrapolation

22 May 2025
Kotaro Yoshida
Konstantinos Slavakis
    OOD
ArXivPDFHTML

Papers citing "Robust Invariant Representation Learning by Distribution Extrapolation"

21 / 21 papers shown
Title
Towards Understanding Variants of Invariant Risk Minimization through
  the Lens of Calibration
Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration
Kotaro Yoshida
Hiroki Naganuma
75
2
0
31 Jan 2024
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
140
3
0
17 Jul 2023
What Is Missing in IRM Training and Evaluation? Challenges and Solutions
What Is Missing in IRM Training and Evaluation? Challenges and Solutions
Yihua Zhang
Pranay Sharma
Parikshit Ram
Min-Fong Hong
Kush R. Varshney
Sijia Liu
55
12
0
04 Mar 2023
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization
  Dilemma in Out-of-Distribution Generalization
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
...
Kaili Ma
Han Yang
P. Zhao
Bo Han
James Cheng
OOD
OODD
37
35
0
15 Jun 2022
Revisiting the Calibration of Modern Neural Networks
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
91
363
0
15 Jun 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
42
258
0
11 Jun 2021
OoD-Bench: Quantifying and Understanding Two Dimensions of
  Out-of-Distribution Generalization
OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization
Nanyang Ye
Kaican Li
Haoyue Bai
Runpeng Yu
Lanqing Hong
Fengwei Zhou
Zhenguo Li
Jun Zhu
CML
OOD
66
109
0
07 Jun 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep
  Learning
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDL
UQCV
94
107
0
11 Apr 2021
Out of Distribution Generalization in Machine Learning
Out of Distribution Generalization in Machine Learning
Martín Arjovsky
OOD
CML
19
89
0
03 Mar 2021
On Calibration and Out-of-domain Generalization
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
40
154
0
20 Feb 2021
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
57
1,129
0
02 Jul 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
284
921
0
02 Mar 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
51
245
0
11 Feb 2020
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
54
1,217
0
20 Nov 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
146
2,190
0
05 Jul 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
135
1,677
0
06 Jun 2019
Measuring Calibration in Deep Learning
Measuring Calibration in Deep Learning
Jeremy Nixon
Michael W. Dusenberry
Ghassen Jerfel
Timothy Nguyen
Jeremiah Zhe Liu
Linchuan Zhang
Dustin Tran
UQCV
59
484
0
02 Apr 2019
The Effectiveness of Data Augmentation in Image Classification using
  Deep Learning
The Effectiveness of Data Augmentation in Image Classification using Deep Learning
Luis Perez
Jason Wang
53
2,771
0
13 Dec 2017
Deeper, Broader and Artier Domain Generalization
Deeper, Broader and Artier Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
94
1,427
0
09 Oct 2017
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
343
9,418
0
28 May 2015
1