Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.15656
Cited By
Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
21 May 2025
Zhexin Zhang
Yuhao Sun
Junxiao Yang
Shiyao Cui
Hongning Wang
Minlie Huang
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!"
3 / 3 papers shown
Title
AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement
Zhexin Zhang
Leqi Lei
Junxiao Yang
Xijie Huang
Yida Lu
...
Xianqi Lei
Changzai Pan
Lei Sha
Han Wang
Minlie Huang
AAML
125
4
0
24 Feb 2025
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI
Daya Guo
Dejian Yang
Haowei Zhang
Junxiao Song
...
Shiyu Wang
S. Yu
Shunfeng Zhou
Shuting Pan
S.S. Li
ReLM
VLM
OffRL
AI4TS
LRM
395
2,031
0
22 Jan 2025
Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators
Yann Dubois
Balázs Galambosi
Percy Liang
Tatsunori Hashimoto
ALM
173
403
0
06 Apr 2024
1