ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14903
  4. Cited By
When to retrain a machine learning model

When to retrain a machine learning model

20 May 2025
Regol Florence
Schwinn Leo
Sprague Kyle
Coates Mark
Markovich Thomas
Author Contacts:
florencer@block.xyz
    OffRL
ArXiv (abs)PDFHTML

Papers citing "When to retrain a machine learning model"

26 / 26 papers shown
Title
Model-Based Uncertainty in Value Functions
Model-Based Uncertainty in Value Functions
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
73
15
0
24 Feb 2023
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
Huaxiu Yao
Caroline Choi
Bochuan Cao
Yoonho Lee
Pang Wei Koh
Chelsea Finn
OOD
68
76
0
25 Nov 2022
Improving Robustness against Real-World and Worst-Case Distribution
  Shifts through Decision Region Quantification
Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification
Leo Schwinn
Leon Bungert
A. Nguyen
René Raab
Falk Pulsmeyer
Doina Precup
Björn Eskofier
Dario Zanca
OOD
76
15
0
19 May 2022
Training Compute-Optimal Large Language Models
Training Compute-Optimal Large Language Models
Jordan Hoffmann
Sebastian Borgeaud
A. Mensch
Elena Buchatskaya
Trevor Cai
...
Karen Simonyan
Erich Elsen
Jack W. Rae
Oriol Vinyals
Laurent Sifre
AI4TS
203
1,949
0
29 Mar 2022
Offline Reinforcement Learning with Implicit Q-Learning
Offline Reinforcement Learning with Implicit Q-Learning
Ilya Kostrikov
Ashvin Nair
Sergey Levine
OffRL
288
910
0
12 Oct 2021
Predicting with Confidence on Unseen Distributions
Predicting with Confidence on Unseen Distributions
Devin Guillory
Vaishaal Shankar
Sayna Ebrahimi
Trevor Darrell
Ludwig Schmidt
UQCVOOD
57
122
0
07 Jul 2021
Offline Reinforcement Learning as One Big Sequence Modeling Problem
Offline Reinforcement Learning as One Big Sequence Modeling Problem
Michael Janner
Qiyang Li
Sergey Levine
OffRL
142
684
0
03 Jun 2021
Detecting and Adapting to Irregular Distribution Shifts in Bayesian
  Online Learning
Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning
Aodong Li
Alex Boyd
Padhraic Smyth
Stephan Mandt
44
24
0
15 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
657
41,103
0
22 Oct 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,356
0
08 Oct 2020
Reactive Soft Prototype Computing for Concept Drift Streams
Reactive Soft Prototype Computing for Concept Drift Streams
Christoph Raab
Moritz Heusinger
Frank-Michael Schleif
32
121
0
10 Jul 2020
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
63
187
0
26 Jun 2020
Conservative Q-Learning for Offline Reinforcement Learning
Conservative Q-Learning for Offline Reinforcement Learning
Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
OffRLOnRL
140
1,824
0
08 Jun 2020
Rethinking Importance Weighting for Deep Learning under Distribution
  Shift
Rethinking Importance Weighting for Deep Learning under Distribution Shift
Tongtong Fang
Nan Lu
Gang Niu
Masashi Sugiyama
62
139
0
08 Jun 2020
The iWildCam 2020 Competition Dataset
The iWildCam 2020 Competition Dataset
Sara Beery
Elijah Cole
Arvi Gjoka
125
90
0
21 Apr 2020
A Unified View of Label Shift Estimation
A Unified View of Label Shift Estimation
Saurabh Garg
Yifan Wu
Sivaraman Balakrishnan
Zachary Chase Lipton
69
144
0
17 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
605
4,822
0
23 Jan 2020
Failing Loudly: An Empirical Study of Methods for Detecting Dataset
  Shift
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
59
370
0
29 Oct 2018
Scikit-Multiflow: A Multi-output Streaming Framework
Scikit-Multiflow: A Multi-output Streaming Framework
Jacob Montiel
Jesse Read
Albert Bifet
T. Abdessalem
35
308
0
12 Jul 2018
Adversarially Robust Generalization Requires More Data
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OODAAML
143
790
0
30 Apr 2018
Online Learning: A Comprehensive Survey
Online Learning: A Comprehensive Survey
Guosheng Lin
Doyen Sahoo
Jing Lu
P. Zhao
OffRL
70
644
0
08 Feb 2018
The Uncertainty Bellman Equation and Exploration
The Uncertainty Bellman Equation and Exploration
Brendan O'Donoghue
Ian Osband
Rémi Munos
Volodymyr Mnih
68
192
0
15 Sep 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
158
3,454
0
07 Oct 2016
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
809
38,961
0
09 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
An Introduction to Convolutional Neural Networks
An Introduction to Convolutional Neural Networks
K. O’Shea
Ryan Nash
FaMLHAI
76
3,152
0
26 Nov 2015
1