ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14042
  4. Cited By
Adversarially Pretrained Transformers may be Universally Robust In-Context Learners

Adversarially Pretrained Transformers may be Universally Robust In-Context Learners

20 May 2025
Soichiro Kumano
Hiroshi Kera
Toshihiko Yamasaki
Author Contacts:
kumano@cvm.t.u-tokyo.ac.jpkera@chiba-u.jpyamasaki@cvm.t.u-tokyo.ac.jp
    AAML
ArXiv (abs)PDFHTML

Papers citing "Adversarially Pretrained Transformers may be Universally Robust In-Context Learners"

36 / 86 papers shown
Title
Reliably fast adversarial training via latent adversarial perturbation
Reliably fast adversarial training via latent adversarial perturbation
Geon Yeong Park
Sang Wan Lee
AAML
56
28
0
04 Apr 2021
On the Robustness of Vision Transformers to Adversarial Examples
On the Robustness of Vision Transformers to Adversarial Examples
Kaleel Mahmood
Rigel Mahmood
Marten van Dijk
ViT
118
224
0
31 Mar 2021
On the Adversarial Robustness of Vision Transformers
On the Adversarial Robustness of Vision Transformers
Rulin Shao
Zhouxing Shi
Jinfeng Yi
Pin-Yu Chen
Cho-Jui Hsieh
ViT
72
142
0
29 Mar 2021
Understanding Robustness of Transformers for Image Classification
Understanding Robustness of Transformers for Image Classification
Srinadh Bhojanapalli
Ayan Chakrabarti
Daniel Glasner
Daliang Li
Thomas Unterthiner
Andreas Veit
ViT
90
385
0
26 Mar 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic
  Meta-Learning
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
80
47
0
20 Feb 2021
Fundamental Tradeoffs in Distributionally Adversarial Training
Fundamental Tradeoffs in Distributionally Adversarial Training
M. Mehrabi
Adel Javanmard
Ryan A. Rossi
Anup B. Rao
Tung Mai
AAML
51
18
0
15 Jan 2021
A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
  Adversarial Fine-tuning
A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via Adversarial Fine-tuning
Ahmadreza Jeddi
M. Shafiee
A. Wong
AAML
67
39
0
25 Dec 2020
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
Basel Alomair
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAUSILM
489
1,923
0
14 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
657
41,103
0
22 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial
  Training
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
102
112
0
05 Oct 2020
Understanding and Improving Fast Adversarial Training
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
79
290
0
06 Jul 2020
Provable tradeoffs in adversarially robust classification
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
60
56
0
09 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
798
42,055
0
28 May 2020
BAE: BERT-based Adversarial Examples for Text Classification
BAE: BERT-based Adversarial Examples for Text Classification
Siddhant Garg
Goutham Ramakrishnan
AAMLSILM
198
556
0
04 Apr 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
157
102
0
20 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
216
1,846
0
03 Mar 2020
Understanding and Mitigating the Tradeoff Between Robustness and
  Accuracy
Understanding and Mitigating the Tradeoff Between Robustness and Accuracy
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
AAML
87
228
0
25 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
277
834
0
19 Feb 2020
Fast is better than free: Revisiting adversarial training
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAMLOOD
138
1,179
0
12 Jan 2020
Are Perceptually-Aligned Gradients a General Property of Robust
  Classifiers?
Are Perceptually-Aligned Gradients a General Property of Robust Classifiers?
Simran Kaur
Jeremy M. Cohen
Zachary Chase Lipton
OODAAML
51
66
0
18 Oct 2019
Universal Adversarial Triggers for Attacking and Analyzing NLP
Universal Adversarial Triggers for Attacking and Analyzing NLP
Eric Wallace
Shi Feng
Nikhil Kandpal
Matt Gardner
Sameer Singh
AAMLSILM
114
866
0
20 Aug 2019
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on
  Text Classification and Entailment
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment
Di Jin
Zhijing Jin
Qiufeng Wang
Peter Szolovits
SILMAAML
179
1,078
0
27 Jul 2019
Adversarial Training Can Hurt Generalization
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
82
243
0
14 Jun 2019
Interpreting Adversarially Trained Convolutional Neural Networks
Interpreting Adversarially Trained Convolutional Neural Networks
Tianyuan Zhang
Zhanxing Zhu
AAMLGANFAtt
100
161
0
23 May 2019
On the Connection Between Adversarial Robustness and Saliency Map
  Interpretability
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
Christian Etmann
Sebastian Lunz
Peter Maass
Carola-Bibiane Schönlieb
AAMLFAtt
58
162
0
10 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
91
1,838
0
06 May 2019
You Only Propagate Once: Accelerating Adversarial Training via Maximal
  Principle
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle
Dinghuai Zhang
Tianyuan Zhang
Yiping Lu
Zhanxing Zhu
Bin Dong
AAML
109
361
0
02 May 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
137
2,551
0
24 Jan 2019
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the
  Robustness of 18 Deep Image Classification Models
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
128
391
0
05 Aug 2018
Adversarial Meta-Learning
Adversarial Meta-Learning
Chengxiang Yin
Jian Tang
Zhiyuan Xu
Yanzhi Wang
64
42
0
08 Jun 2018
Robustness May Be at Odds with Accuracy
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
104
1,781
0
30 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
226
3,186
0
01 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,904
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
307
12,069
0
19 Jun 2017
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
277
19,066
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
275
14,927
1
21 Dec 2013
Previous
12