ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.13078
  4. Cited By
Stochastic Orthogonal Regularization for deep projective priors

Stochastic Orthogonal Regularization for deep projective priors

19 May 2025
Ali Joundi
Yann Traonmilin
Alasdair Newson
ArXivPDFHTML

Papers citing "Stochastic Orthogonal Regularization for deep projective priors"

11 / 11 papers shown
Title
Parameter-free structure-texture image decomposition by unrolling
Parameter-free structure-texture image decomposition by unrolling
Laura Girometti
Jean-François Aujol
Antoine Guennec
Yann Traonmilin
70
1
0
17 Mar 2025
Theoretical Perspectives on Deep Learning Methods in Inverse Problems
Theoretical Perspectives on Deep Learning Methods in Inverse Problems
Jonathan Scarlett
Reinhard Heckel
M. Rodrigues
Paul Hand
Yonina C. Eldar
AI4CE
79
32
0
29 Jun 2022
Denoising Diffusion Restoration Models
Denoising Diffusion Restoration Models
Bahjat Kawar
Michael Elad
Stefano Ermon
Jiaming Song
DiffM
269
833
0
27 Jan 2022
Solving Inverse Problems by Joint Posterior Maximization with
  Autoencoding Prior
Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior
Mario González
Andrés Almansa
Pauline Tan
51
31
0
02 Mar 2021
Plug-and-Play Image Restoration with Deep Denoiser Prior
Plug-and-Play Image Restoration with Deep Denoiser Prior
Peng Sun
Yawei Li
W. Zuo
Lei Zhang
Luc Van Gool
Radu Timofte
DiffM
SupR
95
801
0
31 Aug 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
81
533
0
12 May 2020
Orthogonal Convolutional Neural Networks
Orthogonal Convolutional Neural Networks
Jiayun Wang
Yubei Chen
Rudrasis Chakraborty
Stella X. Yu
77
189
0
27 Nov 2019
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
170
478
0
12 Apr 2018
Solving Linear Inverse Problems Using GAN Priors: An Algorithm with
  Provable Guarantees
Solving Linear Inverse Problems Using GAN Priors: An Algorithm with Provable Guarantees
Viraj Shah
Chinmay Hegde
GAN
89
166
0
23 Feb 2018
FFDNet: Toward a Fast and Flexible Solution for CNN based Image
  Denoising
FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising
Peng Sun
W. Zuo
Lei Zhang
125
2,123
0
11 Oct 2017
Learning Proximal Operators: Using Denoising Networks for Regularizing
  Inverse Imaging Problems
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems
Tim Meinhardt
Michael Möller
C. Hazirbas
Daniel Cremers
63
356
0
11 Apr 2017
1