ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.07119
  4. Cited By
Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression

Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression

11 May 2025
Arianna Stropeni
Francesco Borsatti
Manuel Barusco
Davide Dalle Pezze
Marco Fabris
Gian Antonio Susto
ArXivPDFHTML

Papers citing "Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression"

6 / 6 papers shown
Title
Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
Jiajie Quan
Ao Tong
Yuxuan Cai
Xinwei He
Yanjie Wang
Yang Zhou
117
1
0
27 Mar 2025
PaSTe: Improving the Efficiency of Visual Anomaly Detection at the Edge
PaSTe: Improving the Efficiency of Visual Anomaly Detection at the Edge
Manuel Barusco
Francesco Borsatti
Davide Dalle Pezze
Francesco Paissan
Elisabetta Farella
Gian Antonio Susto
59
3
0
15 Oct 2024
CFA: Coupled-hypersphere-based Feature Adaptation for Target-Oriented
  Anomaly Localization
CFA: Coupled-hypersphere-based Feature Adaptation for Target-Oriented Anomaly Localization
Sungwook Lee
Seunghyun Lee
B. Song
86
192
0
09 Jun 2022
FastFlow: Unsupervised Anomaly Detection and Localization via 2D
  Normalizing Flows
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows
Jiawei Yu1
Ye Zheng
Xiang Wang
Wei Li
Yushuang Wu
Rui Zhao
Liwei Wu
59
310
0
15 Nov 2021
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
Karsten Roth
Latha Pemula
J. Zepeda
Bernhard Schölkopf
Thomas Brox
Peter V. Gehler
UQCV
83
910
0
15 Jun 2021
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
77
838
0
17 Nov 2020
1