ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.05513
  4. Cited By
Exploring Convolutional Neural Networks for Rice Grain Classification: An Explainable AI Approach
v1v2 (latest)

Exploring Convolutional Neural Networks for Rice Grain Classification: An Explainable AI Approach

7 May 2025
Muhammad Junaid Asif
Hamza Khan
Rabia Tehseen
Syed Tahir Hussain Rizvi
Mujtaba Asad
Shazia Saqib
Rana Fayyaz Ahmad
ArXiv (abs)PDFHTML

Papers citing "Exploring Convolutional Neural Networks for Rice Grain Classification: An Explainable AI Approach"

9 / 9 papers shown
Title
A Perspective on Explainable Artificial Intelligence Methods: SHAP and
  LIME
A Perspective on Explainable Artificial Intelligence Methods: SHAP and LIME
Ahmed M. A. Salih
Z. Raisi-Estabragh
I. Galazzo
Petia Radeva
Steffen E. Petersen
Gloria Menegaz
Karim Lekadir
FAtt
63
106
0
03 May 2023
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
298
30,152
0
01 Mar 2022
Searching for MobileNetV3
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
394
6,811
0
06 May 2019
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term
  Memory (LSTM) Network
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network
A. Sherstinsky
115
3,749
0
09 Aug 2018
Generative Adversarial Networks: An Overview
Generative Adversarial Networks: An Overview
Antonia Creswell
Tom White
Vincent Dumoulin
Kai Arulkumaran
B. Sengupta
Anil A Bharath
GAN
128
3,064
0
19 Oct 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,071
0
16 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
886
27,427
0
02 Dec 2015
Deep Learning in Neural Networks: An Overview
Deep Learning in Neural Networks: An Overview
Jürgen Schmidhuber
HAI
250
16,405
0
30 Apr 2014
1