Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.03595
Cited By
v1
v2 (latest)
Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs
6 May 2025
Sidharth S. Menon
Ameya D. Jagtap
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs"
27 / 27 papers shown
Title
Challenges and Advancements in Modeling Shock Fronts with Physics-Informed Neural Networks: A Review and Benchmarking Study
J. Abbasi
Ameya D. Jagtap
Ben Moseley
Aksel Hiorth
P. Andersen
PINN
AI4CE
75
1
0
14 Mar 2025
SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks
Bruno Jacob
Amanda A. Howard
P. Stinis
90
7
0
09 Nov 2024
SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification
Alan John Varghese
Zhen Zhang
George Karniadakis
97
3
0
29 Aug 2024
Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks
Spyros Rigas
M. Papachristou
Theofilos Papadopoulos
Fotios Anagnostopoulos
Georgios Alexandridis
AI4CE
87
24
0
24 Jul 2024
Tackling the Curse of Dimensionality in Fractional and Tempered Fractional PDEs with Physics-Informed Neural Networks
Zheyuan Hu
Kenji Kawaguchi
Zhongqiang Zhang
George Karniadakis
AI4CE
81
3
0
17 Jun 2024
A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks
K. Shukla
Juan Diego Toscano
Zhicheng Wang
Zongren Zou
George Karniadakis
107
83
0
05 Jun 2024
Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation
SS Sidharth
Keerthana AR
R. Gokul
Anas KP
112
87
0
12 May 2024
Score-Based Physics-Informed Neural Networks for High-Dimensional Fokker-Planck Equations
Zheyuan Hu
Zhongqiang Zhang
George Karniadakis
Kenji Kawaguchi
79
14
0
12 Feb 2024
RiemannONets: Interpretable Neural Operators for Riemann Problems
Ahmad Peyvan
Vivek Oommen
Ameya Dilip Jagtap
George Karniadakis
AI4CE
70
26
0
16 Jan 2024
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck
Florent Bonnet
Siddhartha Mishra
Emmanuel de Bezenac
AI4CE
103
18
0
09 Oct 2023
Tackling the Curse of Dimensionality with Physics-Informed Neural Networks
Zheyuan Hu
K. Shukla
George Karniadakis
Kenji Kawaguchi
PINN
AI4CE
105
100
0
23 Jul 2023
Separable Physics-Informed Neural Networks
Junwoo Cho
Seungtae Nam
Hyunmo Yang
S. Yun
Youngjoon Hong
Eunbyung Park
PINN
AI4CE
77
47
0
28 Jun 2023
Learning stiff chemical kinetics using extended deep neural operators
S. Goswami
Ameya Dilip Jagtap
H. Babaee
Bryan T. Susi
George Karniadakis
AI4CE
147
40
0
23 Feb 2023
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
51
74
0
06 Sep 2022
SympOCnet: Solving optimal control problems with applications to high-dimensional multi-agent path planning problems
Tingwei Meng
Zhen Zhang
Jérome Darbon
George Karniadakis
56
15
0
14 Jan 2022
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
79
227
0
16 Jul 2021
Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions
Ameya Dilip Jagtap
Yeonjong Shin
Kenji Kawaguchi
George Karniadakis
ODL
83
134
0
20 May 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
162
284
0
20 Apr 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
97
707
0
19 Mar 2021
Solving high-dimensional parabolic PDEs using the tensor train format
Lorenz Richter
Leon Sallandt
Nikolas Nusken
65
50
0
23 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,448
0
18 Oct 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
84
459
0
07 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
916
0
28 Jul 2020
Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint
E. Cyr
Mamikon A. Gulian
Ravi G. Patel
M. Perego
N. Trask
93
72
0
10 Dec 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,153
0
08 Oct 2019
Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations
M. Raissi
104
188
0
19 Apr 2018
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
123
1,389
0
30 Sep 2017
1