ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.03393
  4. Cited By
Prediction Models That Learn to Avoid Missing Values

Prediction Models That Learn to Avoid Missing Values

6 May 2025
Lena Stempfle
Anton Matsson
Newton Mwai
Fredrik D. Johansson
ArXiv (abs)PDFHTML

Papers citing "Prediction Models That Learn to Avoid Missing Values"

18 / 18 papers shown
Title
Why do Random Forests Work? Understanding Tree Ensembles as
  Self-Regularizing Adaptive Smoothers
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers
Alicia Curth
Alan Jeffares
M. Schaar
UQCV
67
13
0
02 Feb 2024
Benchmarking Distribution Shift in Tabular Data with TableShift
Benchmarking Distribution Shift in Tabular Data with TableShift
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
51
41
0
10 Dec 2023
MINTY: Rule-based Models that Minimize the Need for Imputing Features
  with Missing Values
MINTY: Rule-based Models that Minimize the Need for Imputing Features with Missing Values
Lena Stempfle
Fredrik D. Johansson
75
2
0
23 Nov 2023
The Missing Indicator Method: From Low to High Dimensions
The Missing Indicator Method: From Low to High Dimensions
Mike Van Ness
Tomas M. Bosschieter
Roberto Halpin-Gregorio
Madeleine Udell
AI4TS
55
16
0
16 Nov 2022
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Vincent Jeanselme
Maria De-Arteaga
Zhe Zhang
Jessica Barrett
Brian D. M. Tom
FaML
63
13
0
13 Aug 2022
Sharing pattern submodels for prediction with missing values
Sharing pattern submodels for prediction with missing values
Lena Stempfle
Ashkan Panahi
Fredrik D. Johansson
47
6
0
22 Jun 2022
Classification of datasets with imputed missing values: does imputation
  quality matter?
Classification of datasets with imputed missing values: does imputation quality matter?
Tolou Shadbahr
M. Roberts
Jan Stanczuk
J. Gilbey
P. Teare
...
T. Mirtti
A. Rannikko
J. Aston
Jing Tang
Carola-Bibiane Schönlieb
54
56
0
16 Jun 2022
Fast Sparse Classification for Generalized Linear and Additive Models
Fast Sparse Classification for Generalized Linear and Additive Models
Jiachang Liu
Chudi Zhong
Margo Seltzer
Cynthia Rudin
28
15
0
23 Feb 2022
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
Trent Kyono
Yao Zhang
Alexis Bellot
M. Schaar
CML
70
63
0
04 Nov 2021
What's a good imputation to predict with missing values?
What's a good imputation to predict with missing values?
Marine Le Morvan
Julie Josse
Erwan Scornet
Gaël Varoquaux
AI4TS
72
66
0
01 Jun 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaMLAI4CELRM
210
672
0
20 Mar 2021
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
416
10,591
0
17 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
514
42,449
0
03 Dec 2019
On the Existence of Simpler Machine Learning Models
On the Existence of Simpler Machine Learning Models
Lesia Semenova
Cynthia Rudin
Ronald E. Parr
61
86
0
05 Aug 2019
On the consistency of supervised learning with missing values
On the consistency of supervised learning with missing values
Julie Josse
Jacob M. Chen
Nicolas Prost
Erwan Scornet
Gaël Varoquaux
66
116
0
19 Feb 2019
BEST : A decision tree algorithm that handles missing values
BEST : A decision tree algorithm that handles missing values
Cédric Beaulac
Jeffrey S. Rosenthal
28
24
0
26 Apr 2018
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
809
38,961
0
09 Mar 2016
Prediction with Missing Data via Bayesian Additive Regression Trees
Prediction with Missing Data via Bayesian Additive Regression Trees
A. Kapelner
J. Bleich
92
77
0
03 Jun 2013
1