Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.03393
Cited By
Prediction Models That Learn to Avoid Missing Values
6 May 2025
Lena Stempfle
Anton Matsson
Newton Mwai
Fredrik D. Johansson
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Prediction Models That Learn to Avoid Missing Values"
18 / 18 papers shown
Title
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers
Alicia Curth
Alan Jeffares
M. Schaar
UQCV
67
13
0
02 Feb 2024
Benchmarking Distribution Shift in Tabular Data with TableShift
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
51
41
0
10 Dec 2023
MINTY: Rule-based Models that Minimize the Need for Imputing Features with Missing Values
Lena Stempfle
Fredrik D. Johansson
75
2
0
23 Nov 2023
The Missing Indicator Method: From Low to High Dimensions
Mike Van Ness
Tomas M. Bosschieter
Roberto Halpin-Gregorio
Madeleine Udell
AI4TS
55
16
0
16 Nov 2022
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Vincent Jeanselme
Maria De-Arteaga
Zhe Zhang
Jessica Barrett
Brian D. M. Tom
FaML
63
13
0
13 Aug 2022
Sharing pattern submodels for prediction with missing values
Lena Stempfle
Ashkan Panahi
Fredrik D. Johansson
47
6
0
22 Jun 2022
Classification of datasets with imputed missing values: does imputation quality matter?
Tolou Shadbahr
M. Roberts
Jan Stanczuk
J. Gilbey
P. Teare
...
T. Mirtti
A. Rannikko
J. Aston
Jing Tang
Carola-Bibiane Schönlieb
54
56
0
16 Jun 2022
Fast Sparse Classification for Generalized Linear and Additive Models
Jiachang Liu
Chudi Zhong
Margo Seltzer
Cynthia Rudin
28
15
0
23 Feb 2022
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
Trent Kyono
Yao Zhang
Alexis Bellot
M. Schaar
CML
70
63
0
04 Nov 2021
What's a good imputation to predict with missing values?
Marine Le Morvan
Julie Josse
Erwan Scornet
Gaël Varoquaux
AI4TS
72
66
0
01 Jun 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
210
672
0
20 Mar 2021
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
416
10,591
0
17 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
514
42,449
0
03 Dec 2019
On the Existence of Simpler Machine Learning Models
Lesia Semenova
Cynthia Rudin
Ronald E. Parr
61
86
0
05 Aug 2019
On the consistency of supervised learning with missing values
Julie Josse
Jacob M. Chen
Nicolas Prost
Erwan Scornet
Gaël Varoquaux
66
116
0
19 Feb 2019
BEST : A decision tree algorithm that handles missing values
Cédric Beaulac
Jeffrey S. Rosenthal
28
24
0
26 Apr 2018
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
809
38,961
0
09 Mar 2016
Prediction with Missing Data via Bayesian Additive Regression Trees
A. Kapelner
J. Bleich
92
77
0
03 Jun 2013
1