ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.01105
  4. Cited By
CoCoAFusE: Beyond Mixtures of Experts via Model Fusion

CoCoAFusE: Beyond Mixtures of Experts via Model Fusion

2 May 2025
Aurelio Raffa Ugolini
M. Tanelli
Valentina Breschi
    MoE
ArXiv (abs)PDFHTML

Papers citing "CoCoAFusE: Beyond Mixtures of Experts via Model Fusion"

13 / 13 papers shown
Title
Revisiting Single-gated Mixtures of Experts
Revisiting Single-gated Mixtures of Experts
Amelie Royer
I. Karmanov
Andrii Skliar
B. Bejnordi
Tijmen Blankevoort
MoEMoMe
64
6
0
11 Apr 2023
Combining Modular Skills in Multitask Learning
Combining Modular Skills in Multitask Learning
Edoardo Ponti
Alessandro Sordoni
Yoshua Bengio
Siva Reddy
MoE
60
38
0
28 Feb 2022
How to Certify Machine Learning Based Safety-critical Systems? A
  Systematic Literature Review
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
59
69
0
26 Jul 2021
DSelect-k: Differentiable Selection in the Mixture of Experts with
  Applications to Multi-Task Learning
DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning
Hussein Hazimeh
Zhe Zhao
Aakanksha Chowdhery
M. Sathiamoorthy
Yihua Chen
Rahul Mazumder
Lichan Hong
Ed H. Chi
MoE
151
144
0
07 Jun 2021
A similarity-based Bayesian mixture-of-experts model
A similarity-based Bayesian mixture-of-experts model
Tianfang Zhang
R. Bokrantz
Jimmy Olsson
11
3
0
03 Dec 2020
A Survey on the Explainability of Supervised Machine Learning
A Survey on the Explainability of Supervised Machine Learning
Nadia Burkart
Marco F. Huber
FaMLXAI
53
774
0
16 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
343
1,928
0
12 Nov 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OODBDLUQCV
84
629
0
14 Jul 2020
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
52
938
0
19 Mar 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
157
1,057
0
18 Oct 2018
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
124
4,055
0
16 Jul 2015
Bayesian Hierarchical Mixtures of Experts
Bayesian Hierarchical Mixtures of Experts
Charles M. Bishop
M. Svensén
81
167
0
19 Oct 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
166
4,304
0
18 Nov 2011
1