ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.00466
  4. Cited By
A General Framework for Property-Driven Machine Learning
v1v2 (latest)

A General Framework for Property-Driven Machine Learning

1 May 2025
Thomas Flinkow
Marco Casadio
Colin Kessler
Rosemary Monahan
Ekaterina Komendantskaya
    AAML
ArXiv (abs)PDFHTML

Papers citing "A General Framework for Property-Driven Machine Learning"

36 / 36 papers shown
Title
Neural Network Verification for Gliding Drone Control: A Case Study
Neural Network Verification for Gliding Drone Control: A Case Study
Colin Kessler
Ekaterina Komendantskaya
Marco Casadio
Ignazio Maria Viola
Thomas Flinkow
Albaraa Ammar Othman
Alistair Malhotra
Robbie McPherson
82
1
0
01 May 2025
Neural Network Verification with Branch-and-Bound for General Nonlinearities
Neural Network Verification with Branch-and-Bound for General Nonlinearities
Zhouxing Shi
Qirui Jin
Zico Kolter
Suman Jana
Cho-Jui Hsieh
Huan Zhang
85
18
0
31 May 2024
ULLER: A Unified Language for Learning and Reasoning
ULLER: A Unified Language for Learning and Reasoning
Emile van Krieken
Samy Badreddine
Robin Manhaeve
Eleonora Giunchiglia
NAI
79
3
0
01 May 2024
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks
Haoze Wu
Omri Isac
Aleksandar Zeljić
Teruhiro Tagomori
M. Daggitt
...
Min Wu
Min Zhang
Ekaterina Komendantskaya
Guy Katz
Clark W. Barrett
132
41
0
25 Jan 2024
Efficient compilation of expressive problem space specifications to
  neural network solvers
Efficient compilation of expressive problem space specifications to neural network solvers
M. Daggitt
Wen Kokke
R. Atkey
59
3
0
24 Jan 2024
Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs
Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs
M. Daggitt
Wen Kokke
R. Atkey
Natalia Slusarz
Luca Arnaboldi
Ekaterina Komendantskaya
NAI
84
11
0
12 Jan 2024
The Fourth International Verification of Neural Networks Competition
  (VNN-COMP 2023): Summary and Results
The Fourth International Verification of Neural Networks Competition (VNN-COMP 2023): Summary and Results
Christopher Brix
Stanley Bak
Changliu Liu
Taylor T. Johnson
34
37
0
28 Dec 2023
ANTONIO: Towards a Systematic Method of Generating NLP Benchmarks for
  Verification
ANTONIO: Towards a Systematic Method of Generating NLP Benchmarks for Verification
Marco Casadio
Luca Arnaboldi
M. Daggitt
Omri Isac
Tanvi Dinkar
Daniel Kienitz
Verena Rieser
Ekaterina Komendantskaya
50
4
0
06 May 2023
Logic of Differentiable Logics: Towards a Uniform Semantics of DL
Logic of Differentiable Logics: Towards a Uniform Semantics of DL
Natalia Slusarz
Ekaterina Komendantskaya
M. Daggitt
Rob Stewart
Kathrin Stark
71
17
0
19 Mar 2023
First Three Years of the International Verification of Neural Networks
  Competition (VNN-COMP)
First Three Years of the International Verification of Neural Networks Competition (VNN-COMP)
Christopher Brix
Mark Niklas Muller
Stanley Bak
Taylor T. Johnson
Changliu Liu
NAI
68
74
0
14 Jan 2023
The Third International Verification of Neural Networks Competition
  (VNN-COMP 2022): Summary and Results
The Third International Verification of Neural Networks Competition (VNN-COMP 2022): Summary and Results
Mark Niklas Muller
Christopher Brix
Stanley Bak
Changliu Liu
Taylor T. Johnson
NAI
92
45
0
20 Dec 2022
General Cutting Planes for Bound-Propagation-Based Neural Network
  Verification
General Cutting Planes for Bound-Propagation-Based Neural Network Verification
Huan Zhang
Shiqi Wang
Kaidi Xu
Linyi Li
Yue Liu
Suman Jana
Cho-Jui Hsieh
J. Zico Kolter
72
104
0
11 Aug 2022
Deep Learning with Logical Constraints
Deep Learning with Logical Constraints
Eleonora Giunchiglia
Mihaela C. Stoian
Thomas Lukasiewicz
NAIAI4CE
93
62
0
01 May 2022
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem
  Provers
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem Provers
M. Daggitt
Wen Kokke
R. Atkey
Luca Arnaboldi
Ekaterina Komendantskaya
100
6
0
10 Feb 2022
Introduction to Neural Network Verification
Introduction to Neural Network Verification
Aws Albarghouthi
AAML
86
91
0
21 Sep 2021
The Second International Verification of Neural Networks Competition
  (VNN-COMP 2021): Summary and Results
The Second International Verification of Neural Networks Competition (VNN-COMP 2021): Summary and Results
Stanley Bak
Changliu Liu
Taylor T. Johnson
NAI
94
112
0
31 Aug 2021
A Review of Formal Methods applied to Machine Learning
A Review of Formal Methods applied to Machine Learning
Caterina Urban
Antoine Miné
72
57
0
06 Apr 2021
Neural Network Robustness as a Verification Property: A Principled Case
  Study
Neural Network Robustness as a Verification Property: A Principled Case Study
Marco Casadio
Ekaterina Komendantskaya
M. Daggitt
Wen Kokke
Guy Katz
Guy Amir
Idan Refaeli
OODAAML
71
41
0
03 Apr 2021
Fast and Complete: Enabling Complete Neural Network Verification with
  Rapid and Massively Parallel Incomplete Verifiers
Fast and Complete: Enabling Complete Neural Network Verification with Rapid and Massively Parallel Incomplete Verifiers
Kaidi Xu
Huan Zhang
Shiqi Wang
Yihan Wang
Suman Jana
Xue Lin
Cho-Jui Hsieh
113
188
0
27 Nov 2020
NNV: The Neural Network Verification Tool for Deep Neural Networks and
  Learning-Enabled Cyber-Physical Systems
NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems
Hoang-Dung Tran
Xiaodong Yang
Diego Manzanas Lopez
Patrick Musau
L. V. Nguyen
Weiming Xiang
Stanley Bak
Taylor T. Johnson
95
243
0
12 Apr 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
241
1,859
0
03 Mar 2020
Analyzing Differentiable Fuzzy Logic Operators
Analyzing Differentiable Fuzzy Logic Operators
Emile van Krieken
Erman Acar
F. V. Harmelen
NAIAI4CE
111
136
0
14 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
565
42,639
0
03 Dec 2019
Scaling up the randomized gradient-free adversarial attack reveals
  overestimation of robustness using established attacks
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
54
31
0
27 Mar 2019
Algorithms for Verifying Deep Neural Networks
Algorithms for Verifying Deep Neural Networks
Changliu Liu
Tomer Arnon
Christopher Lazarus
Christopher A. Strong
Clark W. Barrett
Mykel J. Kochenderfer
AAML
98
403
0
15 Mar 2019
Efficient Neural Network Robustness Certification with General
  Activation Functions
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
AAML
101
765
0
02 Nov 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
68
83
0
29 Oct 2018
Scaling provable adversarial defenses
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
78
450
0
31 May 2018
Robustness May Be at Odds with Accuracy
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
110
1,784
0
30 May 2018
Certified Defenses against Adversarial Examples
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
119
969
0
29 Jan 2018
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep
  Multitask Networks
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Zhao Chen
Vijay Badrinarayanan
Chen-Yu Lee
Andrew Rabinovich
ODL
176
1,293
0
07 Nov 2017
Provable defenses against adversarial examples via the convex outer
  adversarial polytope
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
138
1,504
0
02 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
319
12,151
0
19 Jun 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
321
1,875
0
03 Feb 2017
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,129
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
291
14,968
1
21 Dec 2013
1