ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.20077
  4. Cited By
Edge-Based Learning for Improved Classification Under Adversarial Noise

Edge-Based Learning for Improved Classification Under Adversarial Noise

25 April 2025
Manish Kansana
Keyan Alexander Rahimi
Elias Hossain
Iman Dehzangi
Noorbakhsh Amiri Golilarz
    AAML
ArXiv (abs)PDFHTML

Papers citing "Edge-Based Learning for Improved Classification Under Adversarial Noise"

19 / 19 papers shown
Title
Attacking Large Language Models with Projected Gradient Descent
Attacking Large Language Models with Projected Gradient Descent
Simon Geisler
Tom Wollschlager
M. H. I. Abdalla
Johannes Gasteiger
Stephan Günnemann
AAMLSILM
120
61
0
14 Feb 2024
COVID-19 Image Data Collection
COVID-19 Image Data Collection
Joseph Paul Cohen
Paul Morrison
Lan Dao
79
1,012
0
25 Mar 2020
Parametric Noise Injection: Trainable Randomness to Improve Deep Neural
  Network Robustness against Adversarial Attack
Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness against Adversarial Attack
Adnan Siraj Rakin
Zhezhi He
Deliang Fan
AAML
67
291
0
22 Nov 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILMAAML
96
939
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
243
3,194
0
01 Feb 2018
Adversarial Patch
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
91
1,097
0
27 Dec 2017
Defense against Adversarial Attacks Using High-Level Representation
  Guided Denoiser
Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
83
887
0
08 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
317
12,131
0
19 Jun 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural
  Networks
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
87
1,271
0
04 Apr 2017
On the (Statistical) Detection of Adversarial Examples
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
86
714
0
21 Feb 2017
On Detecting Adversarial Perturbations
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
73
950
0
14 Feb 2017
Adversarial Attacks on Neural Network Policies
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAUAAML
102
838
0
08 Feb 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
793
36,881
0
25 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
282
8,583
0
16 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILMAAML
547
5,910
0
08 Jul 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
886
27,416
0
02 Dec 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,121
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,508
0
04 Sep 2014
1