Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2504.15366
Cited By
FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching
21 April 2025
Qifan Yan
Andrew Liu
Shiqi He
Mathias Lécuyer
Ivan Beschastnikh
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching"
26 / 26 papers shown
Title
FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware Submodel Extraction
Feijie Wu
Xingchen Wang
Yaqing Wang
Tianci Liu
Lu Su
Jing Gao
FedML
104
5
0
28 Jul 2024
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
80
22
0
01 Feb 2023
GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning
Shiqi He
Qifan Yan
Feijie Wu
Lanjun Wang
Mathias Lécuyer
Ivan Beschastnikh
FedML
82
7
0
03 Dec 2022
Client Selection in Federated Learning: Principles, Challenges, and Opportunities
Lei Fu
Huan Zhang
Ge Gao
Mi Zhang
Xin Liu
FedML
66
138
0
03 Nov 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
68
14
0
13 Jun 2022
Sign Bit is Enough: A Learning Synchronization Framework for Multi-hop All-reduce with Ultimate Compression
Feijie Wu
Shiqi He
Song Guo
Zhihao Qu
Yining Qi
W. Zhuang
Jie Zhang
54
9
0
14 Apr 2022
Tackling System and Statistical Heterogeneity for Federated Learning with Adaptive Client Sampling
Bing Luo
Wenli Xiao
Shiqiang Wang
Jianwei Huang
Leandros Tassiulas
FedML
92
176
0
21 Dec 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
84
49
0
19 Aug 2021
FedScale: Benchmarking Model and System Performance of Federated Learning at Scale
Fan Lai
Yinwei Dai
Sanjay Sri Vallabh Singapuram
Jiachen Liu
Xiangfeng Zhu
H. Madhyastha
Mosharaf Chowdhury
FedML
109
204
0
24 May 2021
Design and Analysis of Uplink and Downlink Communications for Federated Learning
Sihui Zheng
Cong Shen
Xiang Chen
77
146
0
07 Dec 2020
Optimal Client Sampling for Federated Learning
Jiajun He
Samuel Horváth
Peter Richtárik
FedML
89
201
0
26 Oct 2020
Oort: Efficient Federated Learning via Guided Participant Selection
Fan Lai
Xiangfeng Zhu
H. Madhyastha
Mosharaf Chowdhury
FedML
OODD
124
275
0
12 Oct 2020
FetchSGD: Communication-Efficient Federated Learning with Sketching
D. Rothchild
Ashwinee Panda
Enayat Ullah
Nikita Ivkin
Ion Stoica
Vladimir Braverman
Joseph E. Gonzalez
Raman Arora
FedML
84
370
0
15 Jul 2020
Federated Learning With Quantized Global Model Updates
M. Amiri
Deniz Gunduz
Sanjeev R. Kulkarni
H. Vincent Poor
FedML
92
132
0
18 Jun 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
275
6,294
0
10 Dec 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
90
322
0
31 May 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
76
1,362
0
07 Mar 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
126
2,675
0
04 Feb 2019
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
158
1,423
0
03 Dec 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
82
753
0
20 Sep 2018
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
Takayuki Nishio
Ryo Yonetani
FedML
127
1,407
0
23 Apr 2018
Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
Pete Warden
97
1,627
0
09 Apr 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
207
19,335
0
13 Jan 2018
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
147
6,886
0
04 Jul 2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
408
17,615
0
17 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
1