ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.13458
  4. Cited By
Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping

Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping

18 April 2025
Wang Liu
Zhiyu Wang
Xin Guo
Puhong Duan
Xudong Kang
Shutao Li
ArXivPDFHTML

Papers citing "Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping"

3 / 3 papers shown
Title
OpenEarthMap-SAR: A Benchmark Synthetic Aperture Radar Dataset for Global High-Resolution Land Cover Mapping
OpenEarthMap-SAR: A Benchmark Synthetic Aperture Radar Dataset for Global High-Resolution Land Cover Mapping
J. Xia
Hongruixuan Chen
Clifford Broni-bediako
Yimin Wei
Jian Song
Naoto Yokoya
63
5
0
18 Jan 2025
Swin Transformer V2: Scaling Up Capacity and Resolution
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
203
1,801
0
18 Nov 2021
SegFormer: Simple and Efficient Design for Semantic Segmentation with
  Transformers
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
Enze Xie
Wenhai Wang
Zhiding Yu
Anima Anandkumar
J. Álvarez
Ping Luo
ViT
248
4,990
0
31 May 2021
1