Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2504.08277
Cited By
Enabling Automatic Differentiation with Mollified Graph Neural Operators
11 April 2025
Ryan Y. Lin
Julius Berner
Valentin Duruisseaux
David Pitt
Daniel Leibovici
Jean Kossaifi
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Enabling Automatic Differentiation with Mollified Graph Neural Operators"
15 / 15 papers shown
Title
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min Lin
Kenji Kawaguchi
405
8
0
27 Nov 2024
Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators
Ha Maust
Zong-Yi Li
Yixuan Wang
Daniel Leibovici
O. Bruno
T. Hou
Anima Anandkumar
AI4CE
60
12
0
29 Nov 2022
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
103
56
0
04 Oct 2022
FourCastNet: Accelerating Global High-Resolution Weather Forecasting using Adaptive Fourier Neural Operators
Thorsten Kurth
Shashank Subramanian
P. Harrington
Jaideep Pathak
Morteza Mardani
D. Hall
Andrea Miele
K. Kashinath
Anima Anandkumar
AI4Cl
84
192
0
08 Aug 2022
Applications of physics informed neural operators
S. Rosofsky
Hani Al Majed
Eliu A. Huerta
PINN
AI4CE
44
41
0
23 Mar 2022
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
121
424
0
06 Nov 2021
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
84
468
0
01 Nov 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
82
1,198
0
20 May 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
504
2,448
0
18 Oct 2020
Neural Operator: Graph Kernel Network for Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
202
748
0
07 Mar 2020
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
91
614
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
85
931
0
28 Nov 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
829
11,943
0
09 Mar 2017
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
545
1,412
0
01 Dec 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
172
2,816
0
20 Feb 2015
1