176
20

SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement

Main:15 Pages
6 Figures
Bibliography:4 Pages
16 Tables
Appendix:11 Pages
Abstract

We introduce ThinkLite-VL, a family of visual reasoning models that achieve state-of-the-art (SoTA) performance using an order of magnitude fewer training samples, relying purely on reinforcement fine-tuning (RFT) self-improvement without any knowledge distillation. Our central insight is that sample difficulty critically influences RFT effectiveness: appropriately challenging examples can drive substantial reasoning improvements, even in low-data regimes. However, quantifying sample difficulty in a reliable and scalable manner remains non-trivial. To address this, we repurpose Monte Carlo Tree Search (MCTS) to measure sample difficulty via the number of reasoning iterations a vision-language model (VLM) requires to solve each instance. This MCTS-based selection procedure identifies samples that induce deeper reasoning while remaining solvable, allowing us to filter a high-quality subset from 70k open-source examples spanning math, natural image understanding, and chart comprehension. Using this approach, we select just 11k challenging samples for RFT on Qwen2.5-VL-7B-Instruct and 7.5k samples for Qwen2.5-VL-72B-Instruct. The resulting models, ThinkLite-VL-7B and ThinkLite-VL-72B, significantly outperform their respective base models across eight visual reasoning benchmarks. In particular, ThinkLite-VL-7B improves the average performance of Qwen2.5-VL-7B-Instruct by 7\% and surpasses all existing 7B-level models, as well as much larger models such as GPT-4o, O1 and Qwen2.5-VL-72B, achieving a new SoTA score of 75.1 on MathVista. ThinkLite-VL-72B further advances the SoTA frontier, achieving an accuracy of 79.7 on MathVista and an average benchmark improvement of 4.42 over the open-source SOTA. These results demonstrate that MCTS-guided difficulty filtering provides a scalable and effective path toward data-efficient self-improvement in multimodal reasoning.

View on arXiv
@article{wang2025_2504.07934,
  title={ SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement },
  author={ Xiyao Wang and Zhengyuan Yang and Chao Feng and Hongjin Lu and Linjie Li and Chung-Ching Lin and Kevin Lin and Furong Huang and Lijuan Wang },
  journal={arXiv preprint arXiv:2504.07934},
  year={ 2025 }
}
Comments on this paper