175
20
v1v2v3 (latest)

SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement

Main:15 Pages
6 Figures
Bibliography:4 Pages
16 Tables
Appendix:11 Pages
Abstract

We introduce ThinkLite-VL, a family of visual reasoning models that achieve state-of-the-art (SoTA) performance using an order of magnitude fewer training samples, relying purely on reinforcement fine-tuning (RFT) self-improvement without any knowledge distillation. Our central insight is that sample difficulty critically influences RFT effectiveness: appropriately challenging examples can drive substantial reasoning improvements, even in low-data regimes. However, quantifying sample difficulty in a reliable and scalable manner remains non-trivial. To address this, we repurpose Monte Carlo Tree Search (MCTS) to measure sample difficulty via the number of reasoning iterations a vision-language model (VLM) requires to solve each instance. This MCTS-based selection procedure identifies samples that induce deeper reasoning while remaining solvable, allowing us to filter a high-quality subset from 70k open-source examples spanning math, natural image understanding, and chart comprehension. Using this approach, we select just 11k challenging samples for RFT on Qwen2.5-VL-7B-Instruct and 7.5k samples for Qwen2.5-VL-72B-Instruct. The resulting models, ThinkLite-VL-7B and ThinkLite-VL-72B, significantly outperform their respective base models across eight visual reasoning benchmarks. In particular, ThinkLite-VL-7B improves the average performance of Qwen2.5-VL-7B-Instruct by 7\% and surpasses all existing 7B-level models, as well as much larger models such as GPT-4o, O1 and Qwen2.5-VL-72B, achieving a new SoTA score of 75.1 on MathVista. ThinkLite-VL-72B further advances the SoTA frontier, achieving an accuracy of 79.7 on MathVista and an average benchmark improvement of 4.42 over the open-source SOTA. These results demonstrate that MCTS-guided difficulty filtering provides a scalable and effective path toward data-efficient self-improvement in multimodal reasoning.

View on arXiv
@article{wang2025_2504.07934,
  title={ SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement },
  author={ Xiyao Wang and Zhengyuan Yang and Chao Feng and Hongjin Lu and Linjie Li and Chung-Ching Lin and Kevin Lin and Furong Huang and Lijuan Wang },
  journal={arXiv preprint arXiv:2504.07934},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.