ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.07008
  4. Cited By
Latent Diffusion U-Net Representations Contain Positional Embeddings and Anomalies

Latent Diffusion U-Net Representations Contain Positional Embeddings and Anomalies

9 April 2025
Jonas Loos
Lorenz Linhardt
ArXiv (abs)PDFHTML

Papers citing "Latent Diffusion U-Net Representations Contain Positional Embeddings and Anomalies"

22 / 22 papers shown
Title
Distillation of Diffusion Features for Semantic Correspondence
Distillation of Diffusion Features for Semantic Correspondence
Frank Fundel
Johannes Schusterbauer
Vincent Tao Hu
Bjorn Ommer
DiffM
134
6
0
04 Dec 2024
ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth
  Estimation
ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth Estimation
Suraj Patni
Aradhye Agarwal
Chetan Arora
VLMDiffMMDE
70
30
0
27 Mar 2024
An Analysis of Human Alignment of Latent Diffusion Models
An Analysis of Human Alignment of Latent Diffusion Models
Lorenz Linhardt
Marco Morik
Sidney Bender
Naima Elosegui Borras
DiffM
73
3
0
13 Mar 2024
Deconstructing Denoising Diffusion Models for Self-Supervised Learning
Deconstructing Denoising Diffusion Models for Self-Supervised Learning
Xinlei Chen
Zhuang Liu
Saining Xie
Kaiming He
DiffM
74
60
0
25 Jan 2024
SODA: Bottleneck Diffusion Models for Representation Learning
SODA: Bottleneck Diffusion Models for Representation Learning
Drew A. Hudson
Daniel Zoran
Mateusz Malinowski
Andrew Kyle Lampinen
Andrew Jaegle
James L. McClelland
Loic Matthey
Felix Hill
Alexander Lerchner
DiffM
83
55
0
29 Nov 2023
SD4Match: Learning to Prompt Stable Diffusion Model for Semantic
  Matching
SD4Match: Learning to Prompt Stable Diffusion Model for Semantic Matching
Xinghui Li
Jingyi Lu
Kai Han
V. Prisacariu
DiffM
69
21
0
26 Oct 2023
Linguistic Binding in Diffusion Models: Enhancing Attribute
  Correspondence through Attention Map Alignment
Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment
Royi Rassin
Eran Hirsch
Daniel Glickman
Shauli Ravfogel
Yoav Goldberg
Gal Chechik
DiffM
69
108
0
15 Jun 2023
Beyond Surface Statistics: Scene Representations in a Latent Diffusion
  Model
Beyond Surface Statistics: Scene Representations in a Latent Diffusion Model
Yida Chen
Fernanda Viégas
Martin Wattenberg
DiffM
49
24
0
09 Jun 2023
Emergent Correspondence from Image Diffusion
Emergent Correspondence from Image Diffusion
Luming Tang
Menglin Jia
Qianqian Wang
Cheng Perng Phoo
Bharath Hariharan
91
266
0
06 Jun 2023
Unleashing Text-to-Image Diffusion Models for Visual Perception
Unleashing Text-to-Image Diffusion Models for Visual Perception
Wenliang Zhao
Yongming Rao
Zuyan Liu
Benlin Liu
Jie Zhou
Jiwen Lu
ObjDVLMMDE
239
231
0
03 Mar 2023
Scalable Diffusion Models with Transformers
Scalable Diffusion Models with Transformers
William S. Peebles
Saining Xie
GNN
100
2,386
0
19 Dec 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
283
30,149
0
01 Mar 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
466
15,665
0
20 Dec 2021
Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models
Dmitry Baranchuk
Ivan Rubachev
A. Voynov
Valentin Khrulkov
Artem Babenko
DiffMVLM
277
536
0
06 Dec 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
244
7,933
0
11 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
700
6,121
0
29 Apr 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
967
29,731
0
26 Feb 2021
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
669
18,276
0
19 Jun 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,954
0
12 Jul 2019
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,341
0
18 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
306
7,005
0
12 Mar 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,590
0
01 Sep 2014
1