ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.03926
  4. Cited By
An Exploration-free Method for a Linear Stochastic Bandit Driven by a Linear Gaussian Dynamical System

An Exploration-free Method for a Linear Stochastic Bandit Driven by a Linear Gaussian Dynamical System

4 April 2025
J. Gornet
Yilin Mo
Bruno Sinopoli
ArXivPDFHTML

Papers citing "An Exploration-free Method for a Linear Stochastic Bandit Driven by a Linear Gaussian Dynamical System"

5 / 5 papers shown
Title
Non-Stationary Bandits with Auto-Regressive Temporal Dependency
Non-Stationary Bandits with Auto-Regressive Temporal Dependency
Qinyi Chen
Negin Golrezaei
Djallel Bouneffouf
AI4TS
53
13
0
28 Oct 2022
A Simple Approach for Non-stationary Linear Bandits
A Simple Approach for Non-stationary Linear Bandits
Peng Zhao
Lijun Zhang
Yuan Jiang
Zhi Zhou
54
84
0
09 Mar 2021
Provably Efficient Online Hyperparameter Optimization with
  Population-Based Bandits
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
103
85
0
06 Feb 2020
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
217
2,321
0
21 Mar 2016
Time-Varying Gaussian Process Bandit Optimization
Time-Varying Gaussian Process Bandit Optimization
Ilija Bogunovic
Jonathan Scarlett
Volkan Cevher
86
97
0
25 Jan 2016
1