ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.01947
  4. Cited By
Efficient Federated Learning Tiny Language Models for Mobile Network Feature Prediction

Efficient Federated Learning Tiny Language Models for Mobile Network Feature Prediction

2 April 2025
Daniel Becking
Ingo Friese
Karsten Müller
Thomas Buchholz
Mandy Galkow-Schneider
Wojciech Samek
D. Marpe
ArXiv (abs)PDFHTML

Papers citing "Efficient Federated Learning Tiny Language Models for Mobile Network Feature Prediction"

2 / 2 papers shown
Title
Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
  Access Technologies
Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies
Rodrigo Hernangómez
Philipp Geuer
Alexandros Palaios
Daniel Schäufele
Cara Watermann
...
Friedrich Burmeister
F. Fitzek
Hans D. Schotten
G. Fettweis
Slawomir Stañczak
77
17
0
20 Dec 2022
SentencePiece: A simple and language independent subword tokenizer and
  detokenizer for Neural Text Processing
SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing
Taku Kudo
John Richardson
209
3,534
0
19 Aug 2018
1