Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2504.01223
Cited By
Explainable post-training bias mitigation with distribution-based fairness metrics
1 April 2025
Ryan Franks
A. Miroshnikov
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explainable post-training bias mitigation with distribution-based fairness metrics"
15 / 15 papers shown
Title
Less Discriminatory Alternative and Interpretable XGBoost Framework for Binary Classification
Andrew Pangia
Agus Sudjianto
Aijun Zhang
Taufiquar Khan
FaML
59
1
0
24 Oct 2024
On marginal feature attributions of tree-based models
Khashayar Filom
A. Miroshnikov
Konstandinos Kotsiopoulos
Arjun Ravi Kannan
FAtt
57
3
0
16 Feb 2023
Repairing Regressors for Fair Binary Classification at Any Decision Threshold
Kweku Kwegyir-Aggrey
A. Feder Cooper
Jessica Dai
John P Dickerson
Keegan E. Hines
Suresh Venkatasubramanian
FaML
89
7
0
14 Mar 2022
Designing Inherently Interpretable Machine Learning Models
Agus Sudjianto
Aijun Zhang
FaML
53
31
0
02 Nov 2021
Tabular Data: Deep Learning is Not All You Need
Ravid Shwartz-Ziv
Amitai Armon
LMTD
162
1,288
0
06 Jun 2021
Wasserstein-based fairness interpretability framework for machine learning models
A. Miroshnikov
Konstandinos Kotsiopoulos
Ryan Franks
Arjun Ravi Kannan
FAtt
67
15
0
06 Nov 2020
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
82
108
0
12 Jun 2020
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
155
130
0
16 Mar 2020
Identifying and Correcting Label Bias in Machine Learning
Heinrich Jiang
Ofir Nachum
FaML
101
284
0
15 Jan 2019
A Tutorial on Bayesian Optimization
P. Frazier
GP
113
1,797
0
08 Jul 2018
Interpretable & Explorable Approximations of Black Box Models
Himabindu Lakkaraju
Ece Kamar
R. Caruana
J. Leskovec
FAtt
79
254
0
04 Jul 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
236
4,341
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
212
1,996
0
11 Dec 2014
1