ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.23257
  4. Cited By
FIESTA: Fisher Information-based Efficient Selective Test-time Adaptation

FIESTA: Fisher Information-based Efficient Selective Test-time Adaptation

29 March 2025
Mohammadmahdi Honarmand
O. Mutlu
Parnian Azizian
Saimourya Surabhi
Dennis Paul Wall
    TTA
ArXivPDFHTML

Papers citing "FIESTA: Fisher Information-based Efficient Selective Test-time Adaptation"

20 / 20 papers shown
Title
Computer Vision Estimation of Emotion Reaction Intensity in the Wild
Computer Vision Estimation of Emotion Reaction Intensity in the Wild
Yang Qian
A. Kargarandehkordi
O. Mutlu
Saimourya Surabhi
Mohammadmahdi Honarmand
Dennis Paul Wall
Peter Washington
47
5
0
19 Mar 2023
ABAW: Learning from Synthetic Data & Multi-Task Learning Challenges
ABAW: Learning from Synthetic Data & Multi-Task Learning Challenges
D. Kollias
64
127
0
03 Jul 2022
Continual Test-Time Domain Adaptation
Continual Test-Time Domain Adaptation
Qin Wang
Olga Fink
Luc Van Gool
Dengxin Dai
OOD
TTA
101
419
0
25 Mar 2022
Essentials for Class Incremental Learning
Essentials for Class Incremental Learning
Sudhanshu Mittal
Silvio Galesso
Thomas Brox
CLL
46
96
0
18 Feb 2021
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
79
479
0
30 Jun 2020
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random
  Features in CNNs
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs
Jonathan Frankle
D. Schwab
Ari S. Morcos
62
141
0
29 Feb 2020
Do We Really Need to Access the Source Data? Source Hypothesis Transfer
  for Unsupervised Domain Adaptation
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
Jian Liang
Dapeng Hu
Jiashi Feng
93
1,238
0
20 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
354
42,299
0
03 Dec 2019
Expression, Affect, Action Unit Recognition: Aff-Wild2, Multi-Task
  Learning and ArcFace
Expression, Affect, Action Unit Recognition: Aff-Wild2, Multi-Task Learning and ArcFace
D. Kollias
Stefanos Zafeiriou
CVBM
70
346
0
25 Sep 2019
Robust Learning with Jacobian Regularization
Robust Learning with Jacobian Regularization
Judy Hoffman
Daniel A. Roberts
Sho Yaida
OOD
AAML
48
167
0
07 Aug 2019
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Arechiga
Tengyu Ma
107
1,594
0
18 Jun 2019
Experience Replay for Continual Learning
Experience Replay for Continual Learning
David Rolnick
Arun Ahuja
Jonathan Richard Schwarz
Timothy Lillicrap
Greg Wayne
CLL
112
1,154
0
28 Nov 2018
Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge,
  Deep Architectures, and Beyond
Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond
D. Kollias
Panagiotis Tzirakis
M. Nicolaou
A. Papaioannou
Guoying Zhao
Björn Schuller
I. Kotsia
Stefanos Zafeiriou
CVBM
95
443
0
29 Apr 2018
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
378
26,365
0
05 Sep 2017
AffectNet: A Database for Facial Expression, Valence, and Arousal
  Computing in the Wild
AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild
A. Mollahosseini
Behzad Hasani
Mohammad H. Mahoor
CVBM
80
1,631
0
14 Aug 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
313
7,478
0
02 Dec 2016
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
474
10,305
0
16 Nov 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLL
OOD
SSL
282
4,391
0
29 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Revisiting Natural Gradient for Deep Networks
Revisiting Natural Gradient for Deep Networks
Razvan Pascanu
Yoshua Bengio
ODL
122
388
0
16 Jan 2013
1