Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.23002
Cited By
Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization
29 March 2025
Qingmei Wang
Fanmeng Wang
Bing Su
Hongteng Xu
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization"
9 / 9 papers shown
Title
HYPRO: A Hybridly Normalized Probabilistic Model for Long-Horizon Prediction of Event Sequences
Siqiao Xue
Xiaoming Shi
James Y. Zhang
Hongyuan Mei
AI4TS
36
35
0
04 Oct 2022
Stimuli-Sensitive Hawkes Processes for Personalized Student Procrastination Modeling
Mengfan Yao
Siqian Zhao
Shaghayegh Sherry Sahebi
Reza Feyzi-Behnagh
31
14
0
29 Jan 2021
Generalized Spectral Clustering via Gromov-Wasserstein Learning
Samir Chowdhury
Tom Needham
33
54
0
07 Jun 2020
Transformer Hawkes Process
Simiao Zuo
Haoming Jiang
Zichong Li
T. Zhao
H. Zha
AI4TS
63
292
0
21 Feb 2020
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Hongteng Xu
Dixin Luo
Lawrence Carin
55
194
0
18 May 2019
The Block Point Process Model for Continuous-Time Event-Based Dynamic Networks
Ruthwik R. Junuthula
Maysam Haghdan
Kevin S. Xu
Vijay Devabhaktuni
131
31
0
29 Nov 2017
THAP: A Matlab Toolkit for Learning with Hawkes Processes
Hongteng Xu
H. Zha
28
13
0
28 Aug 2017
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution
Mehrdad Farajtabar
Yichen Wang
Manuel Gomez Rodriguez
Shuang Li
H. Zha
Le Song
65
239
0
08 Jul 2015
Discovering Latent Network Structure in Point Process Data
Scott W. Linderman
Ryan P. Adams
74
282
0
04 Feb 2014
1