ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.20341
  4. Cited By
Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context

Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context

26 March 2025
F. Micheli
Efe C. Balta
Anastasios Tsiamis
John Lygeros
ArXivPDFHTML

Papers citing "Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context"

10 / 10 papers shown
Title
Stochastic Bayesian Optimization with Unknown Continuous Context
  Distribution via Kernel Density Estimation
Stochastic Bayesian Optimization with Unknown Continuous Context Distribution via Kernel Density Estimation
Xiaobin Huang
Lei Song
Ke Xue
Chao Qian
69
3
0
16 Dec 2023
Kernelized Reinforcement Learning with Order Optimal Regret Bounds
Kernelized Reinforcement Learning with Order Optimal Regret Bounds
Sattar Vakili
Julia Olkhovskaya
47
9
0
13 Jun 2023
Convergence of the empirical measure in expected Wasserstein distance:
  non asymptotic explicit bounds in $\mathbb{R}^d$
Convergence of the empirical measure in expected Wasserstein distance: non asymptotic explicit bounds in Rd\mathbb{R}^dRd
N. Fournier
45
17
0
02 Sep 2022
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
55
133
0
15 Sep 2020
Finite-Sample Guarantees for Wasserstein Distributionally Robust
  Optimization: Breaking the Curse of Dimensionality
Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality
Rui Gao
53
92
0
09 Sep 2020
Distributionally Robust Bayesian Optimization
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
75
78
0
20 Feb 2020
Accelerating Experimental Design by Incorporating Experimenter Hunches
Accelerating Experimental Design by Incorporating Experimenter Hunches
Cheng Li
Santu Rana
Sunil R. Gupta
Vu Nguyen
Svetha Venkatesh
...
David Rubín de Celis Leal
Teo Slezak
Murray Height
M. Mohammed
I. Gibson
71
33
0
22 Jul 2019
Bayesian Optimisation over Multiple Continuous and Categorical Inputs
Bayesian Optimisation over Multiple Continuous and Categorical Inputs
Binxin Ru
A. Alvi
Vu Nguyen
Michael A. Osborne
Stephen J. Roberts
101
97
0
20 Jun 2019
Finite-Time Analysis of Kernelised Contextual Bandits
Finite-Time Analysis of Kernelised Contextual Bandits
Michal Valko
N. Korda
Rémi Munos
I. Flaounas
N. Cristianini
185
273
0
26 Sep 2013
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
146
1,619
0
21 Dec 2009
1