Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.18181
Cited By
Adaptive Physics-informed Neural Networks: A Survey
23 March 2025
Edgar Torres
Jonathan Schiefer
Mathias Niepert
PINN
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adaptive Physics-informed Neural Networks: A Survey"
21 / 21 papers shown
Title
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min Lin
Kenji Kawaguchi
408
8
0
27 Nov 2024
Parameterized Physics-informed Neural Networks for Parameterized PDEs
Woojin Cho
Minju Jo
Haksoo Lim
Kookjin Lee
Dongeun Lee
Sanghyun Hong
Noseong Park
PINN
AI4CE
79
19
1
18 Aug 2024
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
139
8
0
02 Aug 2024
Meta-learning of Physics-informed Neural Networks for Efficiently Solving Newly Given PDEs
Tomoharu Iwata
Yusuke Tanaka
N. Ueda
AI4CE
73
2
0
20 Oct 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
71
28
0
27 Mar 2023
Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows
Raphael Pellegrin
Blake Bullwinkel
M. Mattheakis
P. Protopapas
PINN
AI4CE
60
9
0
01 Nov 2022
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
M. Takamoto
T. Praditia
Raphael Leiteritz
Dan MacKinlay
Francesco Alesiani
Dirk Pflüger
Mathias Niepert
AI4CE
76
237
0
13 Oct 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
91
383
0
21 Jul 2022
DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations
Keju Tang
Xiaoliang Wan
Chao Yang
47
115
0
28 Dec 2021
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
86
470
0
01 Nov 2021
A Metalearning Approach for Physics-Informed Neural Networks (PINNs): Application to Parameterized PDEs
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
PINN
AI4CE
91
45
0
26 Oct 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
73
58
0
21 Oct 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
85
1,201
0
20 May 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
507
2,453
0
18 Oct 2020
Transfer learning based multi-fidelity physics informed deep neural network
S. Chakraborty
PINN
OOD
AI4CE
72
165
0
19 May 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
398
1,988
0
11 Apr 2020
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang
Zhiyuan Qi
Keyu Duan
Dongbo Xi
Yongchun Zhu
Hengshu Zhu
Hui Xiong
Qing He
188
4,474
0
07 Nov 2019
Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
S. Goswami
C. Anitescu
S. Chakraborty
Timon Rabczuk
PINN
81
612
0
04 Jul 2019
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
121
412
0
21 Sep 2018
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
240
2,238
0
08 Mar 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
833
11,952
0
09 Mar 2017
1