ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.17793
  4. Cited By
Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM

Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM

22 March 2025
Codefuse
Ling Team
Wenting Cai
Yuchen Cao
C. Chen
Chong Chen
Tian Jin
Daixin Wang
Peng Di
Junpeng Fang
Z. Gong
Ting Guo
Z. He
Yang Huang
Cong Li
J. Li
Zheng Li
Shijie Lian
Bingchang Liu
Songshan Luo
Shuo Mao
Min Shen
Junfei Wu
Jiaolong Yang
Wenjie Yang
Tong Ye
Hang Yu
Wei Zhang
Zhenru Zhang
Hailin Zhao
Xunjin Zheng
Jun Zhou
    ALM
    MoE
ArXivPDFHTML

Papers citing "Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM"

1 / 1 papers shown
Title
Rodimus*: Breaking the Accuracy-Efficiency Trade-Off with Efficient Attentions
Rodimus*: Breaking the Accuracy-Efficiency Trade-Off with Efficient Attentions
Zhihao He
Hang Yu
Zi Gong
Shizhan Liu
J. Li
Weiyao Lin
VLM
38
1
0
09 Oct 2024
1