Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.16777
Cited By
Physics-Informed Deep B-Spline Networks for Dynamical Systems
21 March 2025
Zhuoyuan Wang
Raffaele Romagnoli
Jasmine Ratchford
Yorie Nakahira
PINN
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Physics-Informed Deep B-Spline Networks for Dynamical Systems"
20 / 20 papers shown
Title
Variational formulation based on duality to solve partial differential equations: Use of B-splines and machine learning approximants
N. Sukumar
Amit Acharya
116
2
0
02 Dec 2024
Parameterized Physics-informed Neural Networks for Parameterized PDEs
Woojin Cho
Minju Jo
Haksoo Lim
Kookjin Lee
Dongeun Lee
Sanghyun Hong
Noseong Park
PINN
AI4CE
79
19
1
18 Aug 2024
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
M. Takamoto
T. Praditia
Raphael Leiteritz
Dan MacKinlay
Francesco Alesiani
Dirk Pflüger
Mathias Niepert
AI4CE
84
237
0
13 Oct 2022
Physics-Informed Deep Neural Operator Networks
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
PINN
AI4CE
92
108
0
08 Jul 2022
ExSpliNet: An interpretable and expressive spline-based neural network
Daniele Fakhoury
Emanuele Fakhoury
H. Speleers
66
40
0
03 May 2022
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
121
424
0
06 Nov 2021
Differentiable Spline Approximations
Minsu Cho
Aditya Balu
Ameya Joshi
Anjana Prasad
Biswajit Khara
Soumik Sarkar
Baskar Ganapathysubramanian
A. Krishnamurthy
Chinmay Hegde
53
4
0
04 Oct 2021
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
95
103
0
28 Jun 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
88
1,209
0
20 May 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
173
286
0
20 Apr 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
102
710
0
19 Mar 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
100
521
0
09 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
511
2,456
0
18 Oct 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
94
267
0
29 Jun 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
79
175
0
29 Jun 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
243
793
0
13 Mar 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
Physics-Informed Neural Networks for Power Systems
George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
PINN
AI4CE
69
221
0
09 Nov 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,158
0
08 Oct 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
109
461
0
12 Jun 2019
1