ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.15579
  4. Cited By
Understanding the Generalization of In-Context Learning in Transformers: An Empirical Study

Understanding the Generalization of In-Context Learning in Transformers: An Empirical Study

19 March 2025
Xingxuan Zhang
Haoran Wang
Jiansheng Li
Yuan Xue
Shikai Guan
Renzhe Xu
Hao Zou
Han Yu
Peng Cui
ArXiv (abs)PDFHTML

Papers citing "Understanding the Generalization of In-Context Learning in Transformers: An Empirical Study"

18 / 18 papers shown
Title
Qwen Technical Report
Qwen Technical Report
Jinze Bai
Shuai Bai
Yunfei Chu
Zeyu Cui
Kai Dang
...
Zhenru Zhang
Chang Zhou
Jingren Zhou
Xiaohuan Zhou
Tianhang Zhu
OSLM
266
1,895
0
28 Sep 2023
GPT-4 Technical Report
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAGMLLM
1.5K
14,748
0
15 Mar 2023
Using In-Context Learning to Improve Dialogue Safety
Using In-Context Learning to Improve Dialogue Safety
Nicholas Meade
Spandana Gella
Devamanyu Hazarika
Prakhar Gupta
Di Jin
Siva Reddy
Yang Liu
Dilek Z. Hakkani-Tür
99
39
0
02 Feb 2023
ReAct: Synergizing Reasoning and Acting in Language Models
ReAct: Synergizing Reasoning and Acting in Language Models
Shunyu Yao
Jeffrey Zhao
Dian Yu
Nan Du
Izhak Shafran
Karthik Narasimhan
Yuan Cao
LLMAGReLMLRM
436
2,976
0
06 Oct 2022
On the Relation between Sensitivity and Accuracy in In-context Learning
On the Relation between Sensitivity and Accuracy in In-context Learning
Yanda Chen
Chen Zhao
Zhou Yu
Kathleen McKeown
He He
242
80
0
16 Sep 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function
  Classes
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
141
514
0
01 Aug 2022
PaLM: Scaling Language Modeling with Pathways
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Gaurav Mishra
...
Kathy Meier-Hellstern
Douglas Eck
J. Dean
Slav Petrov
Noah Fiedel
PILMLRM
529
6,293
0
05 Apr 2022
Rethinking the Role of Demonstrations: What Makes In-Context Learning
  Work?
Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Sewon Min
Xinxi Lyu
Ari Holtzman
Mikel Artetxe
M. Lewis
Hannaneh Hajishirzi
Luke Zettlemoyer
LLMAGLRM
167
1,498
0
25 Feb 2022
An Explanation of In-context Learning as Implicit Bayesian Inference
An Explanation of In-context Learning as Implicit Bayesian Inference
Sang Michael Xie
Aditi Raghunathan
Percy Liang
Tengyu Ma
ReLMBDLVPVLMLRM
216
764
0
03 Nov 2021
MetaICL: Learning to Learn In Context
MetaICL: Learning to Learn In Context
Sewon Min
M. Lewis
Luke Zettlemoyer
Hannaneh Hajishirzi
LRM
223
491
0
29 Oct 2021
Meta-learning via Language Model In-context Tuning
Meta-learning via Language Model In-context Tuning
Yanda Chen
Ruiqi Zhong
Sheng Zha
George Karypis
He He
291
162
0
15 Oct 2021
Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
154
739
0
04 Sep 2021
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
  in Natural Language Processing
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
Pengfei Liu
Weizhe Yuan
Jinlan Fu
Zhengbao Jiang
Hiroaki Hayashi
Graham Neubig
VLMSyDa
231
3,989
0
28 Jul 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
587
4,093
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-$3$?
What Makes Good In-Context Examples for GPT-333?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAMLRALM
390
1,390
0
17 Jan 2021
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
880
42,463
0
28 May 2020
Unsupervised Cross-lingual Representation Learning at Scale
Unsupervised Cross-lingual Representation Learning at Scale
Alexis Conneau
Kartikay Khandelwal
Naman Goyal
Vishrav Chaudhary
Guillaume Wenzek
Francisco Guzmán
Edouard Grave
Myle Ott
Luke Zettlemoyer
Veselin Stoyanov
228
6,587
0
05 Nov 2019
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
792
132,454
0
12 Jun 2017
1