Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.14553
Cited By
Redefining non-IID Data in Federated Learning for Computer Vision Tasks: Migrating from Labels to Embeddings for Task-Specific Data Distributions
17 March 2025
Kasra Borazjani
Payam Abdisarabshali
Naji Khosravan
Seyyedali Hosseinalipour
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Redefining non-IID Data in Federated Learning for Computer Vision Tasks: Migrating from Labels to Embeddings for Task-Specific Data Distributions"
22 / 22 papers shown
Title
FedHCA
2
^2
2
: Towards Hetero-Client Federated Multi-Task Learning
Yuxiang Lu
Suizhi Huang
Yuwen Yang
Shalayiding Sirejiding
Yue Ding
Hongtao Lu
FedML
89
3
0
22 Nov 2023
Handling Data Heterogeneity via Architectural Design for Federated Visual Recognition
Sara Pieri
Jose Renato Restom
Samuel Horvath
Hisham Cholakkal
FedML
57
8
0
23 Oct 2023
FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning
Haokun Chen
Yao Zhang
Denis Krompass
Jindong Gu
Volker Tresp
FedML
98
49
0
21 Aug 2023
MAS: Towards Resource-Efficient Federated Multiple-Task Learning
Weiming Zhuang
Yonggang Wen
Lingjuan Lyu
Shuai Zhang
FedML
53
16
0
21 Jul 2023
Local Learning Matters: Rethinking Data Heterogeneity in Federated Learning
Matías Mendieta
Taojiannan Yang
Pu Wang
Minwoo Lee
Zhengming Ding
Chong Chen
FedML
95
161
0
28 Nov 2021
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks
Chaoyang He
Alay Dilipbhai Shah
Zhenheng Tang
Adarshan Naiynar Sivashunmugam
Keerti Bhogaraju
Mita Shimpi
Li Shen
Xiaowen Chu
Mahdi Soltanolkotabi
Salman Avestimehr
VLM
FedML
88
68
0
22 Nov 2021
SplitAVG: A heterogeneity-aware federated deep learning method for medical imaging
Miao Zhang
Liangqiong Qu
Praveer Singh
Jayashree Kalpathy-Cramer
D. Rubin
OOD
FedML
62
62
0
06 Jul 2021
Rethinking Architecture Design for Tackling Data Heterogeneity in Federated Learning
Liangqiong Qu
Yuyin Zhou
Paul Pu Liang
Yingda Xia
Feifei Wang
Ehsan Adeli
L. Fei-Fei
D. Rubin
FedML
AI4CE
64
182
0
10 Jun 2021
No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data
Mi Luo
Fei Chen
Dapeng Hu
Yifan Zhang
Jian Liang
Jiashi Feng
FedML
83
340
0
09 Jun 2021
Fisher Task Distance and Its Application in Neural Architecture Search
Cat P. Le
Mohammadreza Soltani
Juncheng Dong
Vahid Tarokh
FedML
88
8
0
23 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
927
29,436
0
26 Feb 2021
Exploiting Shared Representations for Personalized Federated Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
OOD
101
720
0
14 Feb 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
151
981
0
03 Feb 2021
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
60
1,337
0
15 Jul 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
256
6,261
0
10 Dec 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
140
1,150
0
13 Sep 2019
Which Tasks Should Be Learned Together in Multi-task Learning?
Trevor Scott Standley
Amir Zamir
Dawn Chen
Leonidas Guibas
Jitendra Malik
Silvio Savarese
103
517
0
18 May 2019
A Principled Approach for Learning Task Similarity in Multitask Learning
Changjian Shui
Mahdieh Abbasi
Louis-Émile Robitaille
Boyu Wang
Christian Gagné
67
57
0
21 Mar 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
180
5,184
0
14 Dec 2018
Taskonomy: Disentangling Task Transfer Learning
Amir Zamir
Alexander Sax
Bokui (William) Shen
Leonidas Guibas
Jitendra Malik
Silvio Savarese
120
1,220
0
23 Apr 2018
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,486
0
17 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
1