ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.10439
  4. Cited By
EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning
v1v2 (latest)

EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning

13 March 2025
Simone Magistri
Tomaso Trinci
Albin Soutif--Cormerais
Joost van de Weijer
Andrew D. Bagdanov
ArXiv (abs)PDFHTML

Papers citing "EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning"

46 / 46 papers shown
Title
Elastic Feature Consolidation for Cold Start Exemplar-Free Incremental
  Learning
Elastic Feature Consolidation for Cold Start Exemplar-Free Incremental Learning
Simone Magistri
Tomaso Trinci
Albin Soutif--Cormerais
Joost van de Weijer
Andrew D. Bagdanov
108
24
0
06 Feb 2024
Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning
Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning
Chenyang Wang
Junjun Jiang
Xingyu Hu
Xianming Liu
Xiangyang Ji
110
5
0
12 Jan 2024
Continual Learning: Applications and the Road Forward
Continual Learning: Applications and the Road Forward
Eli Verwimp
Rahaf Aljundi
Shai Ben-David
Matthias Bethge
Andrea Cossu
...
Joost van de Weijer
Bing Liu
Vincenzo Lomonaco
Tinne Tuytelaars
Gido M. van de Ven
CLL
114
47
0
20 Nov 2023
Dual Cognitive Architecture: Incorporating Biases and Multi-Memory
  Systems for Lifelong Learning
Dual Cognitive Architecture: Incorporating Biases and Multi-Memory Systems for Lifelong Learning
Shruthi Gowda
Bahram Zonooz
Elahe Arani
59
3
0
17 Oct 2023
FeCAM: Exploiting the Heterogeneity of Class Distributions in
  Exemplar-Free Continual Learning
FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning
Dipam Goswami
Yuyang Liu
Bartlomiej Twardowski
Joost van de Weijer
CLL
91
61
0
25 Sep 2023
A Comprehensive Empirical Evaluation on Online Continual Learning
A Comprehensive Empirical Evaluation on Online Continual Learning
Albin Soutif--Cormerais
Antonio Carta
Andrea Cossu
J. Hurtado
Hamed Hemati
Vincenzo Lomonaco
Joost van de Weijer
CLL
83
21
0
20 Aug 2023
A Comprehensive Survey of Continual Learning: Theory, Method and
  Application
A Comprehensive Survey of Continual Learning: Theory, Method and Application
Liyuan Wang
Xingxing Zhang
Hang Su
Jun Zhu
KELMCLL
219
708
0
31 Jan 2023
FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
Grégoire Petit
Adrian Daniel Popescu
Hugo Schindler
David Picard
Bertrand Delezoide
CLL
81
123
0
23 Nov 2022
A simple but strong baseline for online continual learning: Repeated
  Augmented Rehearsal
A simple but strong baseline for online continual learning: Repeated Augmented Rehearsal
Yaqian Zhang
Bernhard Pfahringer
E. Frank
Albert Bifet
N. Lim
Yunzhe Jia
CLL
181
44
0
28 Sep 2022
Continual evaluation for lifelong learning: Identifying the stability
  gap
Continual evaluation for lifelong learning: Identifying the stability gap
Matthias De Lange
Gido M. van de Ven
Tinne Tuytelaars
CLL
167
42
0
26 May 2022
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
  Learning
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Da-Wei Zhou
Qiwen Wang
Han-Jia Ye
De-Chuan Zhan
80
138
0
26 May 2022
Class-Incremental Learning by Knowledge Distillation with Adaptive
  Feature Consolidation
Class-Incremental Learning by Knowledge Distillation with Adaptive Feature Consolidation
Minsoo Kang
Jaeyoo Park
Bohyung Han
CLL
103
188
0
02 Apr 2022
Probing Representation Forgetting in Supervised and Unsupervised
  Continual Learning
Probing Representation Forgetting in Supervised and Unsupervised Continual Learning
Mohammad-Javad Davari
Nader Asadi
Sudhir Mudur
Rahaf Aljundi
Eugene Belilovsky
CLLKELM
60
76
0
24 Mar 2022
R-DFCIL: Relation-Guided Representation Learning for Data-Free Class
  Incremental Learning
R-DFCIL: Relation-Guided Representation Learning for Data-Free Class Incremental Learning
Qiankun Gao
Chen Zhao
Guohao Li
Jian Zhang
CLL
67
70
0
24 Mar 2022
Class-Incremental Continual Learning into the eXtended DER-verse
Class-Incremental Continual Learning into the eXtended DER-verse
Matteo Boschini
Lorenzo Bonicelli
Pietro Buzzega
Angelo Porrello
Simone Calderara
CLLBDL
109
142
0
03 Jan 2022
Always Be Dreaming: A New Approach for Data-Free Class-Incremental
  Learning
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith
Yen-Chang Hsu
John C. Balloch
Yilin Shen
Hongxia Jin
Z. Kira
CLL
106
169
0
17 Jun 2021
Continual Learning for Real-World Autonomous Systems: Algorithms,
  Challenges and Frameworks
Continual Learning for Real-World Autonomous Systems: Algorithms, Challenges and Frameworks
Khadija Shaheen
Muhammad Abdullah Hanif
Osman Hasan
Mohamed Bennai
CLL
84
93
0
26 May 2021
Model-centric Data Manifold: the Data Through the Eyes of the Model
Model-centric Data Manifold: the Data Through the Eyes of the Model
Luca Grementieri
R. Fioresi
92
9
0
26 Apr 2021
DER: Dynamically Expandable Representation for Class Incremental
  Learning
DER: Dynamically Expandable Representation for Class Incremental Learning
Shipeng Yan
Jiangwei Xie
Xuming He
CLL
69
457
0
31 Mar 2021
EEC: Learning to Encode and Regenerate Images for Continual Learning
EEC: Learning to Encode and Regenerate Images for Continual Learning
Ali Ayub
Alan R. Wagner
CLL
111
59
0
13 Jan 2021
Class-incremental learning: survey and performance evaluation on image
  classification
Class-incremental learning: survey and performance evaluation on image classification
Marc Masana
Xialei Liu
Bartlomiej Twardowski
Mikel Menta
Andrew D. Bagdanov
Joost van de Weijer
CLL
83
699
0
28 Oct 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
696
41,681
0
22 Oct 2020
Adaptive Aggregation Networks for Class-Incremental Learning
Adaptive Aggregation Networks for Class-Incremental Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
CLL
105
220
0
10 Oct 2020
Generative Feature Replay For Class-Incremental Learning
Generative Feature Replay For Class-Incremental Learning
Xialei Liu
Chenshen Wu
Mikel Menta
Luis Herranz
Bogdan Raducanu
Andrew D. Bagdanov
Shangling Jui
Joost van de Weijer
CLL
64
156
0
20 Apr 2020
Dark Experience for General Continual Learning: a Strong, Simple
  Baseline
Dark Experience for General Continual Learning: a Strong, Simple Baseline
Pietro Buzzega
Matteo Boschini
Angelo Porrello
Davide Abati
Simone Calderara
BDLCLL
89
928
0
15 Apr 2020
Semantic Drift Compensation for Class-Incremental Learning
Semantic Drift Compensation for Class-Incremental Learning
Lu Yu
Bartlomiej Twardowski
Xialei Liu
Luis Herranz
Kai Wang
Yongmei Cheng
Shangling Jui
Joost van de Weijer
CLL
95
345
0
01 Apr 2020
Online Continual Learning with Maximally Interfered Retrieval
Online Continual Learning with Maximally Interfered Retrieval
Rahaf Aljundi
Lucas Caccia
Eugene Belilovsky
Massimo Caccia
Min Lin
Laurent Charlin
Tinne Tuytelaars
CLL
95
550
0
11 Aug 2019
Large Scale Incremental Learning
Large Scale Incremental Learning
Yue Wu
Yinpeng Chen
Lijuan Wang
Yuancheng Ye
Zicheng Liu
Yandong Guo
Y. Fu
CLL
102
1,261
0
30 May 2019
Task-Free Continual Learning
Task-Free Continual Learning
Rahaf Aljundi
Klaas Kelchtermans
Tinne Tuytelaars
CLL
140
362
0
10 Dec 2018
DeeSIL: Deep-Shallow Incremental Learning
DeeSIL: Deep-Shallow Incremental Learning
Eden Belouadah
Adrian Daniel Popescu
CLL
98
73
0
20 Aug 2018
End-to-End Incremental Learning
End-to-End Incremental Learning
F. M. Castro
M. Marín-Jiménez
Nicolás Guil Mata
Cordelia Schmid
Alahari Karteek
CLL
97
1,161
0
25 Jul 2018
Online Structured Laplace Approximations For Overcoming Catastrophic
  Forgetting
Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting
H. Ritter
Aleksandar Botev
David Barber
BDLCLL
91
334
0
20 May 2018
Rotate your Networks: Better Weight Consolidation and Less Catastrophic
  Forgetting
Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting
Xialei Liu
Marc Masana
Luis Herranz
Joost van de Weijer
Antonio M. López
Andrew D. Bagdanov
CLL
108
280
0
08 Feb 2018
Riemannian Walk for Incremental Learning: Understanding Forgetting and
  Intransigence
Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence
Arslan Chaudhry
P. Dokania
Thalaiyasingam Ajanthan
Philip Torr
CLL
119
1,147
0
30 Jan 2018
On Quadratic Penalties in Elastic Weight Consolidation
On Quadratic Penalties in Elastic Weight Consolidation
Ferenc Huszár
69
102
0
11 Dec 2017
Memory Aware Synapses: Learning what (not) to forget
Memory Aware Synapses: Learning what (not) to forget
Rahaf Aljundi
F. Babiloni
Mohamed Elhoseiny
Marcus Rohrbach
Tinne Tuytelaars
KELMCLL
90
1,652
0
27 Nov 2017
Gradient Episodic Memory for Continual Learning
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLMCLL
153
2,743
0
26 Jun 2017
Continual Learning with Deep Generative Replay
Continual Learning with Deep Generative Replay
Hanul Shin
Jung Kwon Lee
Jaehong Kim
Jiwon Kim
KELMCLL
91
2,089
0
24 May 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
376
7,602
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
182
3,787
0
23 Nov 2016
Less-forgetting Learning in Deep Neural Networks
Less-forgetting Learning in Deep Neural Networks
Heechul Jung
Jeongwoo Ju
Minju Jung
Junmo Kim
116
229
0
01 Jul 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
321
4,449
0
29 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,819
0
10 Dec 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
367
19,784
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,532
0
22 Dec 2014
New insights and perspectives on the natural gradient method
New insights and perspectives on the natural gradient method
James Martens
ODL
176
631
0
03 Dec 2014
1