Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.09649
Cited By
v1
v2 (latest)
Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics
12 March 2025
Daniele Malpetti
Marco Scutari
Francesco Gualdi
Jessica van Setten
Sander van der Laan
Saskia Haitjema
Aaron Mark Lee
Isabelle Hering
Francesca Mangili
FedML
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics"
29 / 29 papers shown
Title
Vertical Federated Learning: Concepts, Advances and Challenges
Yang Liu
Yan Kang
Tianyuan Zou
Yanhong Pu
Yuanqin He
Xiaozhou Ye
Ye Ouyang
Yaqin Zhang
Qian Yang
FedML
155
173
0
23 Nov 2022
Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges
Enrique Tomás Martínez Beltrán
Mario Quiles Pérez
Pedro Miguel Sánchez Sánchez
Sergio López Bernal
Gérome Bovet
M. Pérez
Gregorio Martínez Pérez
Alberto Huertas Celdrán
FedML
69
254
0
15 Nov 2022
Cross-Silo Federated Learning: Challenges and Opportunities
Chao Huang
Jianwei Huang
Xin Liu
FedML
60
61
0
26 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
89
141
0
15 Jun 2022
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging
Rui Yan
Liangqiong Qu
Qingyue Wei
Shih-Cheng Huang
Liyue Shen
D. Rubin
Lei Xing
Yuyin Zhou
FedML
143
100
0
17 May 2022
Secure Aggregation for Federated Learning in Flower
Kwing Hei Li
Pedro Porto Buarque de Gusmão
Daniel J. Beutel
Nicholas D. Lane
FedML
73
39
0
12 May 2022
HarmoFL: Harmonizing Local and Global Drifts in Federated Learning on Heterogeneous Medical Images
Meirui Jiang
Zirui Wang
Qi Dou
FedML
116
130
0
20 Dec 2021
Federated Learning Attacks Revisited: A Critical Discussion of Gaps, Assumptions, and Evaluation Setups
A. Wainakh
Ephraim Zimmer
Sandeep Subedi
Jens Keim
Tim Grube
Shankar Karuppayah
Alejandro Sánchez Guinea
Max Mühlhäuser
74
9
0
05 Nov 2021
Federated Learning Algorithms for Generalized Mixed-effects Model (GLMM) on Horizontally Partitioned Data from Distributed Sources
Wentao Li
Jiayi Tong
M. Anjum
N. Mohammed
Yong Chen
Xiaoqian Jiang
FedML
30
10
0
28 Sep 2021
Federated Learning for Multi-Center Imaging Diagnostics: A Study in Cardiovascular Disease
Akis Linardos
Kaisar Kushibar
S. Walsh
P. Gkontra
Karim Lekadir
FedML
72
68
0
07 Jul 2021
HyFed: A Hybrid Federated Framework for Privacy-preserving Machine Learning
Reza Nasirigerdeh
Reihaneh Torkzadehmahani
Julian O. Matschinske
Jan Baumbach
Daniel Rueckert
Georgios Kaissis
FedML
60
10
0
21 May 2021
OpenFL: An open-source framework for Federated Learning
G. A. Reina
Alexey Gruzdev
Patrick Foley
O. Perepelkina
Mansi Sharma
...
Sarthak Pati
Prakash Narayana Moorthy
Shih-Han Wang
Prashant Shah
Spyridon Bakas
FedML
AIFin
101
112
0
13 May 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
114
440
0
14 Mar 2021
Semi-Supervised Federated Peer Learning for Skin Lesion Classification
T. Bdair
Nassir Navab
Shadi Albarqouni
FedML
87
13
0
05 Mar 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
332
874
0
01 Mar 2021
Federated Semi-Supervised Learning for COVID Region Segmentation in Chest CT using Multi-National Data from China, Italy, Japan
Dong Yang
Ziyue Xu
Wenqi Li
Andriy Myronenko
H. Roth
...
Hitoshi Mori
K. Tamura
P. An
Bradford J. Wood
Daguang Xu
OOD
FedML
88
33
0
23 Nov 2020
Federated Learning for Breast Density Classification: A Real-World Implementation
H. Roth
Ken Chang
Praveer Singh
N. Neumark
Wenqi Li
...
I. Dayan
R. Naidu
Mona G. Flores
D. Rubin
Jayashree Kalpathy-Cramer
OOD
FedML
AI4CE
66
166
0
03 Sep 2020
Flower: A Friendly Federated Learning Research Framework
Daniel J. Beutel
Taner Topal
Akhil Mathur
Xinchi Qiu
Javier Fernandez-Marques
...
Lorenzo Sani
Kwing Hei Li
Titouan Parcollet
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
FedML
140
820
0
28 Jul 2020
Data Poisoning Attacks on Federated Machine Learning
Gan Sun
Yang Cong
Jiahua Dong
Qiang Wang
Ji Liu
FedML
AAML
65
207
0
19 Apr 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
121
1,234
0
31 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
261
1,785
0
18 Mar 2020
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
161
1,008
0
04 Oct 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
153
482
0
28 May 2019
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning
Matthew Jagielski
Alina Oprea
Battista Biggio
Chang-rui Liu
Cristina Nita-Rotaru
Yue Liu
AAML
85
764
0
01 Apr 2018
Privacy-preserving Prediction
Cynthia Dwork
Vitaly Feldman
61
91
0
27 Mar 2018
Locally Private Bayesian Inference for Count Models
Aaron Schein
Zhiwei Steven Wu
Alexandra Schofield
Mingyuan Zhou
Hanna M. Wallach
123
37
0
22 Mar 2018
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
280
4,160
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,172
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
408
17,615
0
17 Feb 2016
1