ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.08228
  4. Cited By

Investigating Execution-Aware Language Models for Code Optimization

11 March 2025
Federico Di Menna
Luca Traini
Gabriele Bavota
Vittorio Cortellessa
ArXiv (abs)PDFHTML

Papers citing "Investigating Execution-Aware Language Models for Code Optimization"

11 / 11 papers shown
Title
RAPGen: An Approach for Fixing Code Inefficiencies in Zero-Shot
RAPGen: An Approach for Fixing Code Inefficiencies in Zero-Shot
Spandan Garg
Roshanak Zilouchian Moghaddam
Neel Sundaresan
153
10
0
10 Jan 2025
AI-driven Java Performance Testing: Balancing Result Quality with
  Testing Time
AI-driven Java Performance Testing: Balancing Result Quality with Testing Time
Luca Traini
Federico Di Menna
Vittorio Cortellessa
58
4
0
09 Aug 2024
Learning Program Behavioral Models from Synthesized Input-Output Pairs
Learning Program Behavioral Models from Synthesized Input-Output Pairs
Tural Mammadov
Dietrich Klakow
Alexander Koller
Andreas Zeller
85
3
0
11 Jul 2024
Source Code Summarization in the Era of Large Language Models
Source Code Summarization in the Era of Large Language Models
Weisong Sun
Yun Miao
Yuekang Li
Hongyu Zhang
Chunrong Fang
Yi Liu
Gelei Deng
Yang Liu
Zhenyu Chen
ELM
125
17
0
09 Jul 2024
NExT: Teaching Large Language Models to Reason about Code Execution
NExT: Teaching Large Language Models to Reason about Code Execution
Ansong Ni
Miltiadis Allamanis
Arman Cohan
Yinlin Deng
Kensen Shi
Charles Sutton
Pengcheng Yin
ReLMLRM
86
44
0
23 Apr 2024
Supersonic: Learning to Generate Source Code Optimizations in C/C++
Supersonic: Learning to Generate Source Code Optimizations in C/C++
Zimin Chen
Sen Fang
Monperrus Martin
80
13
0
26 Sep 2023
Code Representation Pre-training with Complements from Program
  Executions
Code Representation Pre-training with Complements from Program Executions
Jiabo Huang
Jianyu Zhao
Yuyang Rong
Yiwen Guo
Yifeng He
Hao Chen
87
4
0
04 Sep 2023
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
Ziyang Luo
Can Xu
Pu Zhao
Qingfeng Sun
Xiubo Geng
Wenxiang Hu
Chongyang Tao
Jing Ma
Qingwei Lin
Daxin Jiang
ELMSyDaALM
100
687
0
14 Jun 2023
Learning Performance-Improving Code Edits
Learning Performance-Improving Code Edits
Alex Shypula
Aman Madaan
Yiming Yang
Uri Alon
Jacob R. Gardner
Milad Hashemi
Graham Neubig
Parthasarathy Ranganathan
Osbert Bastani
Amir Yazdanbakhsh
SyDa
76
89
0
15 Feb 2023
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of
  Coding Tasks
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding Tasks
Ruchi Puri
David S. Kung
G. Janssen
Wei Zhang
Giacomo Domeniconi
...
Saurabh Pujar
Shyam Ramji
Ulrich Finkler
Susan Malaika
Frederick Reiss
79
244
0
25 May 2021
A Survey on Compiler Autotuning using Machine Learning
A Survey on Compiler Autotuning using Machine Learning
Amir H. Ashouri
W. Killian
John Cavazos
G. Palermo
Cristina Silvano
75
202
0
13 Jan 2018
1