ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.04377
  4. Cited By

How can representation dimension dominate structurally pruned LLMs?

6 March 2025
Mingxue Xu
Lisa Alazraki
Danilo Mandic
ArXiv (abs)PDFHTML

Papers citing "How can representation dimension dominate structurally pruned LLMs?"

6 / 6 papers shown
Title
Round and Round We Go! What makes Rotary Positional Encodings useful?
Round and Round We Go! What makes Rotary Positional Encodings useful?
Federico Barbero
Alex Vitvitskyi
Christos Perivolaropoulos
Razvan Pascanu
Petar Velickovic
121
29
0
08 Oct 2024
Towards Automated Circuit Discovery for Mechanistic Interpretability
Towards Automated Circuit Discovery for Mechanistic Interpretability
Arthur Conmy
Augustine N. Mavor-Parker
Aengus Lynch
Stefan Heimersheim
Adrià Garriga-Alonso
66
319
0
28 Apr 2023
Interpretability in the Wild: a Circuit for Indirect Object
  Identification in GPT-2 small
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
316
563
0
01 Nov 2022
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
651
4,925
0
23 Jan 2020
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
277
3,489
0
09 Mar 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
811
132,725
0
12 Jun 2017
1