ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.03241
  4. Cited By

Structural Entropy Guided Unsupervised Graph Out-Of-Distribution Detection

13 March 2025
Yue Hou
He Zhu
Ruomei Liu
Yingke Su
Jinxiang Xia
Junran Wu
Ke Xu
    OODD
ArXiv (abs)PDFHTML

Papers citing "Structural Entropy Guided Unsupervised Graph Out-Of-Distribution Detection"

31 / 31 papers shown
Title
Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Shenzhi Yang
Bin Liang
An Liu
Lin Gui
Xingkai Yao
Xiaofang Zhang
OODD
189
4
0
18 Apr 2025
HILL: Hierarchy-aware Information Lossless Contrastive Learning for
  Hierarchical Text Classification
HILL: Hierarchy-aware Information Lossless Contrastive Learning for Hierarchical Text Classification
He Zhu
Junran Wu
Ruomei Liu
Yue Hou
Ze Yuan
Shangzhe Li
Yicheng Pan
Ke Xu
38
6
0
26 Mar 2024
Environment-Aware Dynamic Graph Learning for Out-of-Distribution
  Generalization
Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization
Haonan Yuan
Qingyun Sun
Xingcheng Fu
Ziwei Zhang
Cheng Ji
Hao Peng
Jianxin Li
OOD
89
22
0
18 Nov 2023
HiTIN: Hierarchy-aware Tree Isomorphism Network for Hierarchical Text
  Classification
HiTIN: Hierarchy-aware Tree Isomorphism Network for Hierarchical Text Classification
He Zhu
Chong Zhang
Junjie Huang
Junran Wu
Ke Xu
94
22
0
24 May 2023
Unifying Graph Contrastive Learning with Flexible Contextual Scopes
Unifying Graph Contrastive Learning with Flexible Contextual Scopes
Yizhen Zheng
Yu Zheng
Xiaofei Zhou
Chen Gong
V. Lee
Shirui Pan
81
17
0
17 Oct 2022
Structural Entropy Guided Graph Hierarchical Pooling
Structural Entropy Guided Graph Hierarchical Pooling
Junran Wu
Xueyuan Chen
Ke Xu
Shangzhe Li
69
76
0
26 Jun 2022
A Simple yet Effective Method for Graph Classification
A Simple yet Effective Method for Graph Classification
Junran Wu
Shangzhe Li
Jianhao Li
Yicheng Pan
Keyulu Xu
123
26
0
06 Jun 2022
Rethinking and Scaling Up Graph Contrastive Learning: An Extremely
  Efficient Approach with Group Discrimination
Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination
Yizhen Zheng
Shirui Pan
Vincent C. S. Lee
Yu Zheng
Philip S. Yu
68
98
0
03 Jun 2022
Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation
Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation
Rongrong Ma
Guansong Pang
Ling-Hao Chen
Anton Van Den Hengel
69
93
0
19 Dec 2021
NGC: A Unified Framework for Learning with Open-World Noisy Data
NGC: A Unified Framework for Learning with Open-World Noisy Data
Zhi-Fan Wu
Tong Wei
Jianwen Jiang
Chaojie Mao
Mingqian Tang
Yu-Feng Li
51
83
0
25 Aug 2021
Contrastive Out-of-Distribution Detection for Pretrained Transformers
Contrastive Out-of-Distribution Detection for Pretrained Transformers
Wenxuan Zhou
Fangyu Liu
Muhao Chen
43
100
0
18 Apr 2021
SSD: A Unified Framework for Self-Supervised Outlier Detection
SSD: A Unified Framework for Self-Supervised Outlier Detection
Vikash Sehwag
M. Chiang
Prateek Mittal
OODD
114
345
0
22 Mar 2021
Graph Self-Supervised Learning: A Survey
Graph Self-Supervised Learning: A Survey
Yixin Liu
Ming Jin
Shirui Pan
Chuan Zhou
Yu Zheng
Xiwei Xu
Philip S. Yu
SSL
107
571
0
27 Feb 2021
On Using Classification Datasets to Evaluate Graph-Level Outlier
  Detection: Peculiar Observations and New Insights
On Using Classification Datasets to Evaluate Graph-Level Outlier Detection: Peculiar Observations and New Insights
Lingxiao Zhao
Leman Akoglu
83
67
0
23 Dec 2020
Graph Contrastive Learning with Adaptive Augmentation
Graph Contrastive Learning with Adaptive Augmentation
Yanqiao Zhu
Yichen Xu
Feng Yu
Qiang Liu
Shu Wu
Liang Wang
84
1,112
0
27 Oct 2020
Graph Information Bottleneck
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
146
237
0
24 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
239
827
0
16 Jul 2020
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
J. Qiu
Qibin Chen
Yuxiao Dong
Jing Zhang
Hongxia Yang
Ming Ding
Kuansan Wang
Jie Tang
SSL
229
960
0
17 Jun 2020
Self-supervised Learning: Generative or Contrastive
Self-supervised Learning: Generative or Contrastive
Xiao Liu
Fanjin Zhang
Zhenyu Hou
Zhaoyu Wang
Li Mian
Jing Zhang
Jie Tang
SSL
139
1,630
0
15 Jun 2020
Contrastive Multi-View Representation Learning on Graphs
Contrastive Multi-View Representation Learning on Graphs
Kaveh Hassani
Amir Hosein Khas Ahmadi
SSL
232
1,305
0
10 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
309
2,746
0
02 May 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
381
18,866
0
13 Feb 2020
On Mutual Information Maximization for Representation Learning
On Mutual Information Maximization for Representation Learning
Michael Tschannen
Josip Djolonga
Paul Kishan Rubenstein
Sylvain Gelly
Mario Lucic
SSL
179
501
0
31 Jul 2019
On Variational Bounds of Mutual Information
On Variational Bounds of Mutual Information
Ben Poole
Sherjil Ozair
Aaron van den Oord
Alexander A. Alemi
George Tucker
SSL
111
814
0
16 May 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
257
7,695
0
01 Oct 2018
Deep Graph Infomax
Deep Graph Infomax
Petar Velickovic
W. Fedus
William L. Hamilton
Pietro Lio
Yoshua Bengio
R. Devon Hjelm
GNN
130
2,396
0
27 Sep 2018
Enhancing The Reliability of Out-of-distribution Image Detection in
  Neural Networks
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang
Yixuan Li
R. Srikant
UQCVOODD
171
2,081
0
08 Jun 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
171
3,472
0
07 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
662
29,156
0
09 Sep 2016
Propagation Kernels
Propagation Kernels
Marion Neumann
Roman Garnett
Christian Bauckhage
Kristian Kersting
70
262
0
13 Oct 2014
Graph Kernels
Graph Kernels
S.V.N. Vishwanathan
Karsten Borgwardt
I. Kondor
N. Schraudolph
149
1,206
0
01 Jul 2008
1