ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.02154
  4. Cited By

AugFL: Augmenting Federated Learning with Pretrained Models

4 March 2025
Sheng Yue
Zerui Qin
Yongheng Deng
Ju Ren
Yaoxue Zhang
Junshan Zhang
    FedML
ArXivPDFHTML

Papers citing "AugFL: Augmenting Federated Learning with Pretrained Models"

14 / 14 papers shown
Title
FATE-LLM: A Industrial Grade Federated Learning Framework for Large
  Language Models
FATE-LLM: A Industrial Grade Federated Learning Framework for Large Language Models
Tao Fan
Yan Kang
Guoqiang Ma
Weijing Chen
Wenbin Wei
Lixin Fan
Qiang Yang
51
63
0
16 Oct 2023
GPT-4 Technical Report
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAG
MLLM
368
13,788
0
15 Mar 2023
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
171
356
0
13 Oct 2021
Pre-Trained Models: Past, Present and Future
Pre-Trained Models: Past, Present and Future
Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
...
Jie Tang
Ji-Rong Wen
Jinhui Yuan
Wayne Xin Zhao
Jun Zhu
AIFin
MQ
AI4MH
93
833
0
14 Jun 2021
Towards Personalized Federated Learning
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
282
855
0
01 Mar 2021
Show, Attend and Distill:Knowledge Distillation via Attention-based
  Feature Matching
Show, Attend and Distill:Knowledge Distillation via Attention-based Feature Matching
Mingi Ji
Byeongho Heo
Sungrae Park
84
146
0
05 Feb 2021
Inexact-ADMM Based Federated Meta-Learning for Fast and Continual Edge
  Learning
Inexact-ADMM Based Federated Meta-Learning for Fast and Continual Edge Learning
Sheng Yue
Ju Ren
Jiang Xin
Sen Lin
Junshan Zhang
FedML
47
44
0
16 Dec 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
383
41,106
0
28 May 2020
A Comprehensive Survey on Transfer Learning
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang
Zhiyuan Qi
Keyu Duan
Dongbo Xi
Yongchun Zhu
Hengshu Zhu
Hui Xiong
Qing He
151
4,395
0
07 Nov 2019
Federated Learning over Wireless Networks: Convergence Analysis and
  Resource Allocation
Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation
Canh T. Dinh
N. H. Tran
Minh N. H. Nguyen
Choong Seon Hong
Wei Bao
Albert Y. Zomaya
Vincent Gramoli
FedML
89
333
0
29 Oct 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
70
2,652
0
04 Feb 2019
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
94
8,807
0
25 Aug 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
742
11,793
0
09 Mar 2017
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
253
4,620
0
18 Oct 2016
1