Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.00547
Cited By
Performance Heterogeneity in Graph Neural Networks: Lessons for Architecture Design and Preprocessing
1 March 2025
Lukas Fesser
Melanie Weber
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Performance Heterogeneity in Graph Neural Networks: Lessons for Architecture Design and Preprocessing"
18 / 18 papers shown
Title
Mitigating Over-Smoothing and Over-Squashing using Augmentations of Forman-Ricci Curvature
Lukas Fesser
Melanie Weber
67
24
0
17 Sep 2023
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
70
66
0
15 Jun 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
122
573
0
25 May 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
108
444
0
29 Nov 2021
Graph Neural Networks in Recommender Systems: A Survey
Shiwen Wu
Fei Sun
Wentao Zhang
Xu Xie
Tengjiao Wang
GNN
153
1,230
0
04 Nov 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
213
135
0
17 Oct 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
127
435
0
16 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
91
693
0
09 Jun 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
438
940
0
02 Mar 2020
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
101
313
0
14 Feb 2020
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
110
1,339
0
25 Jul 2019
What graph neural networks cannot learn: depth vs width
Andreas Loukas
GNN
84
299
0
06 Jul 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,653
0
01 Oct 2018
Modeling polypharmacy side effects with graph convolutional networks
Marinka Zitnik
Monica Agrawal
J. Leskovec
GNN
116
1,083
0
02 Feb 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNN
SSL
189
2,826
0
22 Jan 2018
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,164
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
509
15,247
0
07 Jun 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
644
29,076
0
09 Sep 2016
1