Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.16733
Cited By
Coreset Selection via LLM-based Concept Bottlenecks
23 February 2025
Akshay Mehra
Trisha Mittal
Subhadra Gopalakrishnan
Joshua Kimball
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Coreset Selection via LLM-based Concept Bottlenecks"
19 / 19 papers shown
Title
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Usha Bhalla
Alexander X. Oesterling
Suraj Srinivas
Flavio du Pin Calmon
Himabindu Lakkaraju
105
40
0
16 Feb 2024
D2 Pruning: Message Passing for Balancing Diversity and Difficulty in Data Pruning
A. Maharana
Prateek Yadav
Mohit Bansal
83
32
0
11 Oct 2023
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAG
MLLM
1.4K
14,359
0
15 Mar 2023
Beyond neural scaling laws: beating power law scaling via data pruning
Ben Sorscher
Robert Geirhos
Shashank Shekhar
Surya Ganguli
Ari S. Morcos
95
441
0
29 Jun 2022
Do Vision-Language Pretrained Models Learn Composable Primitive Concepts?
Tian Yun
Usha Bhalla
Ellie Pavlick
Chen Sun
ReLM
CoGe
VLM
LRM
62
25
0
31 Mar 2022
Natural Language Descriptions of Deep Visual Features
Evan Hernandez
Sarah Schwettmann
David Bau
Teona Bagashvili
Antonio Torralba
Jacob Andreas
MILM
299
123
0
26 Jan 2022
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
114
457
0
15 Jul 2021
Large-Scale Zero-Shot Image Classification from Rich and Diverse Textual Descriptions
Sebastian Bujwid
Josephine Sullivan
VLM
101
28
0
17 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
927
29,436
0
26 Feb 2021
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
96
823
0
09 Jul 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
605
4,822
0
23 Jan 2020
A Constructive Prediction of the Generalization Error Across Scales
Jonathan S. Rosenfeld
Amir Rosenfeld
Yonatan Belinkov
Nir Shavit
101
211
0
27 Sep 2019
Coresets for Clustering with Fairness Constraints
Lingxiao Huang
S. Jiang
Nisheeth K. Vishnoi
77
102
0
20 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
139
18,134
0
28 May 2019
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
115
734
0
12 Dec 2018
Few-Shot Learning with Graph Neural Networks
Victor Garcia Satorras
Joan Bruna
GNN
167
1,239
0
10 Nov 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
210
2,894
0
14 Mar 2017
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
370
7,323
0
13 Jun 2016
A Unified Framework for Approximating and Clustering Data
Dan Feldman
M. Langberg
147
457
0
07 Jun 2011
1