Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.15798
Cited By
MaxSup: Overcoming Representation Collapse in Label Smoothing
18 February 2025
Yuxuan Zhou
Heng Li
Zhi-Qi Cheng
Xudong Yan
Yifei Dong
Mario Fritz
Margret Keuper
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MaxSup: Overcoming Representation Collapse in Label Smoothing"
32 / 32 papers shown
Title
The Persistence of Neural Collapse Despite Low-Rank Bias: An Analytic Perspective Through Unconstrained Features
Connall Garrod
Jonathan P. Keating
53
4
0
30 Oct 2024
Neural Collapse versus Low-rank Bias: Is Deep Neural Collapse Really Optimal?
Peter Súkeník
Marco Mondelli
Christoph H. Lampert
AI4CE
58
10
0
23 May 2024
Cross Entropy versus Label Smoothing: A Neural Collapse Perspective
Li Guo
George Andriopoulos
Zifan Zhao
Shuyang Ling
Shuyang Ling
Keith Ross
UQCV
NoLa
58
9
0
06 Feb 2024
Steering Large Language Models for Machine Translation with Finetuning and In-Context Learning
Duarte M. Alves
Nuno M. Guerreiro
Joao Alves
José P. Pombal
Ricardo Rei
José G. C. de Souza
Pierre Colombo
André F.T. Martins
63
52
0
20 Oct 2023
Quantifying the Variability Collapse of Neural Networks
Jing-Xue Xu
Haoxiong Liu
62
6
0
06 Jun 2023
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
75
41
0
06 Mar 2023
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
Zachary Novack
Julian McAuley
Zachary Chase Lipton
Saurabh Garg
VLM
77
83
0
06 Feb 2023
Adaptive Label Smoothing with Self-Knowledge in Natural Language Generation
Dongkyu Lee
Ka Chun Cheung
N. Zhang
41
8
0
22 Oct 2022
Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou
Chong You
Xiao Li
Kangning Liu
Sheng Liu
Qing Qu
Zhihui Zhu
64
64
0
04 Oct 2022
Efficient One Pass Self-distillation with Zipf's Label Smoothing
Jiajun Liang
Linze Li
Z. Bing
Borui Zhao
Yao Tang
Bo Lin
Haoqiang Fan
47
19
0
26 Jul 2022
No Reason for No Supervision: Improved Generalization in Supervised Models
Mert Bulent Sariyildiz
Yannis Kalantidis
Alahari Karteek
Diane Larlus
SSL
OOD
LRM
65
28
0
30 Jun 2022
Revisiting Label Smoothing and Knowledge Distillation Compatibility: What was Missing?
Keshigeyan Chandrasegaran
Ngoc-Trung Tran
Yunqing Zhao
Ngai-Man Cheung
120
44
0
29 Jun 2022
SP-ViT: Learning 2D Spatial Priors for Vision Transformers
Yuxuan Zhou
Wangmeng Xiang
Chong Li
Biao Wang
Xihan Wei
Lei Zhang
Margret Keuper
Xia Hua
ViT
57
15
0
15 Jun 2022
Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot Image Classification
Kai Yi
Xiaoqian Shen
Yunhao Gou
Mohamed Elhoseiny
72
21
0
02 Mar 2022
Rethinking Supervised Pre-training for Better Downstream Transferring
Yutong Feng
Jianwen Jiang
Mingqian Tang
Rong Jin
Yue Gao
SSL
88
40
0
12 Oct 2021
HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning
Shiming Chen
Guosen Xie
Yang Liu
Qinmu Peng
Baigui Sun
Hao Li
Xinge You
Ling Shao
102
128
0
30 Sep 2021
Is Label Smoothing Truly Incompatible with Knowledge Distillation: An Empirical Study
Zhiqiang Shen
Zechun Liu
Dejia Xu
Zitian Chen
Kwang-Ting Cheng
Marios Savvides
41
76
0
01 Apr 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
415
21,347
0
25 Mar 2021
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
357
6,731
0
23 Dec 2020
Delving Deep into Label Smoothing
Chang-Bin Zhang
Peng-Tao Jiang
Qibin Hou
Yunchao Wei
Qi Han
Zhen Li
Ming-Ming Cheng
96
212
0
25 Nov 2020
Why Do Better Loss Functions Lead to Less Transferable Features?
Simon Kornblith
Ting-Li Chen
Honglak Lee
Mohammad Norouzi
FaML
75
92
0
30 Oct 2020
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
179
1,938
0
06 Jun 2019
Unified Perceptual Parsing for Scene Understanding
Tete Xiao
Yingcheng Liu
Bolei Zhou
Yuning Jiang
Jian Sun
OCL
VOS
171
1,871
0
26 Jul 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
171
19,204
0
13 Jan 2018
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
280
5,812
0
14 Jun 2017
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
155
1,137
0
23 Jan 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
264
19,929
0
07 Oct 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
804
27,303
0
02 Dec 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
320
19,609
0
09 Mar 2015
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.6K
39,472
0
01 Sep 2014
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
541
15,874
0
12 Nov 2013
1