Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.06645
Cited By
Koopman-Equivariant Gaussian Processes
10 February 2025
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Koopman-Equivariant Gaussian Processes"
50 / 61 papers shown
Title
MTIL: Encoding Full History with Mamba for Temporal Imitation Learning
Yulin Zhou
Yuankai Lin
Fanzhe Peng
Jiahui Chen
Zhuang Zhou
Kaiji Huang
Hua Yang
Zhouping Yin
Mamba
36
0
0
18 May 2025
Safe Time-Varying Optimization based on Gaussian Processes with Spatio-Temporal Kernel
Jialin Li
Marta Zagorowska
Giulia De Pasquale
Alisa Rupenyan
John Lygeros
48
3
0
26 Sep 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
82
5
0
23 May 2024
Safe Exploration Using Bayesian World Models and Log-Barrier Optimization
Yarden As
Bhavya Sukhija
Andreas Krause
OffRL
52
2
0
09 May 2024
Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces
Isao Ishikawa
Yuka Hashimoto
Masahiro Ikeda
Yoshinobu Kawahara
17
9
0
04 Mar 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
56
19
0
03 Feb 2024
Learning Symmetrization for Equivariance with Orbit Distance Minimization
Tien Dat Nguyen
Jinwoo Kim
Hongseok Yang
Seunghoon Hong
43
3
0
13 Nov 2023
Learning invariant representations of time-homogeneous stochastic dynamical systems
Vladimir Kostic
P. Novelli
Riccardo Grazzi
Karim Lounici
Massimiliano Pontil
40
7
0
19 Jul 2023
Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance
Jinwoo Kim
Tien Dat Nguyen
Ayhan Suleymanzade
Hyeokjun An
Seunghoon Hong
60
23
0
05 Jun 2023
Koopman Kernel Regression
Petar Bevanda
Maximilian Beier
Armin Lederer
Stefan Sosnowski
Eyke Hüllermeier
Sandra Hirche
AI4TS
39
16
0
25 May 2023
The Signature Kernel
Darrick Lee
Harald Oberhauser
176
10
0
08 May 2023
Images of Gaussian and other stochastic processes under closed, densely-defined, unbounded linear operators
T. Matsumoto
T. Sullivan
50
3
0
05 May 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
38
9
0
20 Feb 2023
Sharp Spectral Rates for Koopman Operator Learning
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
89
21
0
03 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
57
26
0
24 Jan 2023
The Past Does Matter: Correlation of Subsequent States in Trajectory Predictions of Gaussian Process Models
Steffen Ridderbusch
Sina Ober-Blobaum
Paul Goulart
42
2
0
20 Nov 2022
Modeling Temporal Data as Continuous Functions with Stochastic Process Diffusion
Marin Bilos
Kashif Rasul
Anderson Schneider
Yuriy Nevmyvaka
Stephan Günnemann
DiffM
54
33
0
04 Nov 2022
Gaussian Process Koopman Mode Decomposition
Takahiro Kawashima
H. Hino
34
6
0
09 Sep 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
45
49
0
02 Aug 2022
Ensemble forecasts in reproducing kernel Hilbert space family
Benjamin Dufée
Berenger Hug
É. Mémin
G. Tissot
75
1
0
29 Jul 2022
Safe Reinforcement Learning via Confidence-Based Filters
Sebastian Curi
Armin Lederer
Sandra Hirche
Andreas Krause
OffRL
41
4
0
04 Jul 2022
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
50
61
0
27 May 2022
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
71
3
0
22 May 2022
Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu
Karan Goel
Christopher Ré
162
1,719
0
31 Oct 2021
Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning
Lukas Brunke
Melissa Greeff
Adam W. Hall
Zhaocong Yuan
Siqi Zhou
Jacopo Panerati
Angela P. Schoellig
OffRL
48
610
0
13 Aug 2021
Provably Strict Generalisation Benefit for Invariance in Kernel Methods
Bryn Elesedy
29
27
0
04 Jun 2021
GoSafe: Globally Optimal Safe Robot Learning
Dominik Baumann
A. Marco
M. Turchetta
Sebastian Trimpe
29
37
0
27 May 2021
Monash Time Series Forecasting Archive
Rakshitha Godahewa
Christoph Bergmeir
Geoffrey I. Webb
Rob J. Hyndman
Pablo Montero-Manso
AI4TS
39
150
0
14 May 2021
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
M. Lemercier
C. Salvi
Thomas Cass
Edwin V. Bonilla
Theodoros Damoulas
Terry Lyons
37
25
0
10 May 2021
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
90
411
0
24 Feb 2021
Provably Strict Generalisation Benefit for Equivariant Models
Bryn Elesedy
Sheheryar Zaidi
AI4CE
26
85
0
20 Feb 2021
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
61
997
0
19 Feb 2021
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
46
130
0
15 Sep 2020
The Signature Kernel is the solution of a Goursat PDE
C. Salvi
Thomas Cass
James Foster
Terry Lyons
Weixin Yang
SyDa
149
57
0
26 Jun 2020
Prediction with Approximated Gaussian Process Dynamical Models
Thomas Beckers
Sandra Hirche
AI4CE
29
19
0
25 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
47
83
0
15 Jun 2020
Kernel Analog Forecasting: Multiscale Test Problems
Dmitry Burov
D. Giannakis
Krithika Manohar
Andrew M. Stuart
27
22
0
13 May 2020
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
68
1,211
0
28 Apr 2020
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
GP
OffRL
177
1,338
0
15 Apr 2020
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
Lukas Hewing
Elena Arcari
Lukas P. Frohlich
Melanie Zeilinger
35
35
0
23 Dec 2019
Geometric Considerations of a Good Dictionary for Koopman Analysis of Dynamical Systems: Cardinality, 'Primary Eigenfunction,' and Efficient Representation
Erik Bollt
20
23
0
18 Dec 2019
A Rigorous Theory of Conditional Mean Embeddings
I. Klebanov
Ingmar Schuster
T. Sullivan
40
40
0
02 Dec 2019
Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019
Omer Berat Sezer
M. U. Gudelek
A. Ozbayoglu
AI4TS
60
1,001
0
29 Nov 2019
Stochastic data-driven model predictive control using Gaussian processes
E. Bradford
Lars Imsland
Dongda Zhang
Ehecatl Antonio del Rio Chanona
23
94
0
05 Aug 2019
Operator-theoretic framework for forecasting nonlinear time series with kernel analog techniques
Romeo Alexander
D. Giannakis
AI4TS
8
66
0
30 May 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
47
152
0
08 Mar 2019
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
57
85
0
16 Aug 2018
Approximation beats concentration? An approximation view on inference with smooth radial kernels
M. Belkin
77
69
0
10 Jan 2018
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Stefan Klus
Ingmar Schuster
Krikamol Muandet
48
121
0
05 Dec 2017
Variational approach for learning Markov processes from time series data
Hao Wu
Frank Noé
BDL
AI4TS
22
261
0
14 Jul 2017
1
2
Next