ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.06645
  4. Cited By

Koopman-Equivariant Gaussian Processes

10 February 2025
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
    AI4TS
ArXivPDFHTML

Papers citing "Koopman-Equivariant Gaussian Processes"

50 / 61 papers shown
Title
MTIL: Encoding Full History with Mamba for Temporal Imitation Learning
MTIL: Encoding Full History with Mamba for Temporal Imitation Learning
Yulin Zhou
Yuankai Lin
Fanzhe Peng
Jiahui Chen
Zhuang Zhou
Kaiji Huang
Hua Yang
Zhouping Yin
Mamba
36
0
0
18 May 2025
Safe Time-Varying Optimization based on Gaussian Processes with
  Spatio-Temporal Kernel
Safe Time-Varying Optimization based on Gaussian Processes with Spatio-Temporal Kernel
Jialin Li
Marta Zagorowska
Giulia De Pasquale
Alisa Rupenyan
John Lygeros
48
3
0
26 Sep 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning
  Algorithms
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
82
5
0
23 May 2024
Safe Exploration Using Bayesian World Models and Log-Barrier
  Optimization
Safe Exploration Using Bayesian World Models and Log-Barrier Optimization
Yarden As
Bhavya Sukhija
Andreas Krause
OffRL
52
2
0
09 May 2024
Koopman operators with intrinsic observables in rigged reproducing
  kernel Hilbert spaces
Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces
Isao Ishikawa
Yuka Hashimoto
Masahiro Ikeda
Yoshinobu Kawahara
17
9
0
04 Mar 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
56
19
0
03 Feb 2024
Learning Symmetrization for Equivariance with Orbit Distance
  Minimization
Learning Symmetrization for Equivariance with Orbit Distance Minimization
Tien Dat Nguyen
Jinwoo Kim
Hongseok Yang
Seunghoon Hong
43
3
0
13 Nov 2023
Learning invariant representations of time-homogeneous stochastic
  dynamical systems
Learning invariant representations of time-homogeneous stochastic dynamical systems
Vladimir Kostic
P. Novelli
Riccardo Grazzi
Karim Lounici
Massimiliano Pontil
40
7
0
19 Jul 2023
Learning Probabilistic Symmetrization for Architecture Agnostic
  Equivariance
Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance
Jinwoo Kim
Tien Dat Nguyen
Ayhan Suleymanzade
Hyeokjun An
Seunghoon Hong
60
23
0
05 Jun 2023
Koopman Kernel Regression
Koopman Kernel Regression
Petar Bevanda
Maximilian Beier
Armin Lederer
Stefan Sosnowski
Eyke Hüllermeier
Sandra Hirche
AI4TS
39
16
0
25 May 2023
The Signature Kernel
The Signature Kernel
Darrick Lee
Harald Oberhauser
176
10
0
08 May 2023
Images of Gaussian and other stochastic processes under closed,
  densely-defined, unbounded linear operators
Images of Gaussian and other stochastic processes under closed, densely-defined, unbounded linear operators
T. Matsumoto
T. Sullivan
50
3
0
05 May 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
38
9
0
20 Feb 2023
Sharp Spectral Rates for Koopman Operator Learning
Sharp Spectral Rates for Koopman Operator Learning
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
89
21
0
03 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
57
26
0
24 Jan 2023
The Past Does Matter: Correlation of Subsequent States in Trajectory
  Predictions of Gaussian Process Models
The Past Does Matter: Correlation of Subsequent States in Trajectory Predictions of Gaussian Process Models
Steffen Ridderbusch
Sina Ober-Blobaum
Paul Goulart
42
2
0
20 Nov 2022
Modeling Temporal Data as Continuous Functions with Stochastic Process
  Diffusion
Modeling Temporal Data as Continuous Functions with Stochastic Process Diffusion
Marin Bilos
Kashif Rasul
Anderson Schneider
Yuriy Nevmyvaka
Stephan Günnemann
DiffM
54
33
0
04 Nov 2022
Gaussian Process Koopman Mode Decomposition
Gaussian Process Koopman Mode Decomposition
Takahiro Kawashima
H. Hino
34
6
0
09 Sep 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
45
49
0
02 Aug 2022
Ensemble forecasts in reproducing kernel Hilbert space family
Ensemble forecasts in reproducing kernel Hilbert space family
Benjamin Dufée
Berenger Hug
É. Mémin
G. Tissot
75
1
0
29 Jul 2022
Safe Reinforcement Learning via Confidence-Based Filters
Safe Reinforcement Learning via Confidence-Based Filters
Sebastian Curi
Armin Lederer
Sandra Hirche
Andreas Krause
OffRL
41
4
0
04 Jul 2022
Learning Dynamical Systems via Koopman Operator Regression in
  Reproducing Kernel Hilbert Spaces
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
50
61
0
27 May 2022
Fast Instrument Learning with Faster Rates
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
71
3
0
22 May 2022
Efficiently Modeling Long Sequences with Structured State Spaces
Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu
Karan Goel
Christopher Ré
162
1,719
0
31 Oct 2021
Safe Learning in Robotics: From Learning-Based Control to Safe
  Reinforcement Learning
Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning
Lukas Brunke
Melissa Greeff
Adam W. Hall
Zhaocong Yuan
Siqi Zhou
Jacopo Panerati
Angela P. Schoellig
OffRL
48
610
0
13 Aug 2021
Provably Strict Generalisation Benefit for Invariance in Kernel Methods
Provably Strict Generalisation Benefit for Invariance in Kernel Methods
Bryn Elesedy
29
27
0
04 Jun 2021
GoSafe: Globally Optimal Safe Robot Learning
GoSafe: Globally Optimal Safe Robot Learning
Dominik Baumann
A. Marco
M. Turchetta
Sebastian Trimpe
29
37
0
27 May 2021
Monash Time Series Forecasting Archive
Monash Time Series Forecasting Archive
Rakshitha Godahewa
Christoph Bergmeir
Geoffrey I. Webb
Rob J. Hyndman
Pablo Montero-Manso
AI4TS
39
150
0
14 May 2021
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
M. Lemercier
C. Salvi
Thomas Cass
Edwin V. Bonilla
Theodoros Damoulas
Terry Lyons
37
25
0
10 May 2021
Modern Koopman Theory for Dynamical Systems
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
90
411
0
24 Feb 2021
Provably Strict Generalisation Benefit for Equivariant Models
Provably Strict Generalisation Benefit for Equivariant Models
Bryn Elesedy
Sheheryar Zaidi
AI4CE
26
85
0
20 Feb 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
61
997
0
19 Feb 2021
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
46
130
0
15 Sep 2020
The Signature Kernel is the solution of a Goursat PDE
The Signature Kernel is the solution of a Goursat PDE
C. Salvi
Thomas Cass
James Foster
Terry Lyons
Weixin Yang
SyDa
149
57
0
26 Jun 2020
Prediction with Approximated Gaussian Process Dynamical Models
Prediction with Approximated Gaussian Process Dynamical Models
Thomas Beckers
Sandra Hirche
AI4CE
29
19
0
25 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
47
83
0
15 Jun 2020
Kernel Analog Forecasting: Multiscale Test Problems
Kernel Analog Forecasting: Multiscale Test Problems
Dmitry Burov
D. Giannakis
Krithika Manohar
Andrew M. Stuart
27
22
0
13 May 2020
Time Series Forecasting With Deep Learning: A Survey
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
68
1,211
0
28 Apr 2020
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
GP
OffRL
177
1,338
0
15 Apr 2020
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
Lukas Hewing
Elena Arcari
Lukas P. Frohlich
Melanie Zeilinger
35
35
0
23 Dec 2019
Geometric Considerations of a Good Dictionary for Koopman Analysis of
  Dynamical Systems: Cardinality, 'Primary Eigenfunction,' and Efficient
  Representation
Geometric Considerations of a Good Dictionary for Koopman Analysis of Dynamical Systems: Cardinality, 'Primary Eigenfunction,' and Efficient Representation
Erik Bollt
20
23
0
18 Dec 2019
A Rigorous Theory of Conditional Mean Embeddings
A Rigorous Theory of Conditional Mean Embeddings
I. Klebanov
Ingmar Schuster
T. Sullivan
40
40
0
02 Dec 2019
Financial Time Series Forecasting with Deep Learning : A Systematic
  Literature Review: 2005-2019
Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019
Omer Berat Sezer
M. U. Gudelek
A. Ozbayoglu
AI4TS
60
1,001
0
29 Nov 2019
Stochastic data-driven model predictive control using Gaussian processes
Stochastic data-driven model predictive control using Gaussian processes
E. Bradford
Lars Imsland
Dongda Zhang
Ehecatl Antonio del Rio Chanona
23
94
0
05 Aug 2019
Operator-theoretic framework for forecasting nonlinear time series with
  kernel analog techniques
Operator-theoretic framework for forecasting nonlinear time series with kernel analog techniques
Romeo Alexander
D. Giannakis
AI4TS
8
66
0
30 May 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
47
152
0
08 Mar 2019
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
57
85
0
16 Aug 2018
Approximation beats concentration? An approximation view on inference
  with smooth radial kernels
Approximation beats concentration? An approximation view on inference with smooth radial kernels
M. Belkin
77
69
0
10 Jan 2018
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert
  Spaces
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Stefan Klus
Ingmar Schuster
Krikamol Muandet
48
121
0
05 Dec 2017
Variational approach for learning Markov processes from time series data
Variational approach for learning Markov processes from time series data
Hao Wu
Frank Noé
BDL
AI4TS
22
261
0
14 Jul 2017
12
Next