Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.06363
Cited By
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
10 February 2025
S. Iwazaki
Shion Takeno
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance"
9 / 9 papers shown
Title
Gaussian Process Upper Confidence Bound Achieves Nearly-Optimal Regret in Noise-Free Gaussian Process Bandits
Shogo Iwazaki
58
1
0
26 Feb 2025
Random Exploration in Bayesian Optimization: Order-Optimal Regret and Computational Efficiency
Sudeep Salgia
Sattar Vakili
Qing Zhao
38
9
0
23 Oct 2023
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
49
53
0
20 Aug 2021
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
56
205
0
15 Dec 2020
A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance
Sudeep Salgia
Sattar Vakili
Qing Zhao
55
34
0
27 Oct 2020
Bandit optimisation of functions in the Matérn kernel RKHS
David Janz
David R. Burt
Javier I. González
21
43
0
28 Jan 2020
Tight Regret Bounds for Bayesian Optimization in One Dimension
Jonathan Scarlett
90
27
0
30 May 2018
Finite-Time Analysis of Kernelised Contextual Bandits
Michal Valko
N. Korda
Rémi Munos
I. Flaounas
N. Cristianini
101
271
0
26 Sep 2013
Convergence rates of efficient global optimization algorithms
Adam D. Bull
87
641
0
18 Jan 2011
1