Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.06335
Cited By
Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks
10 February 2025
Emanuel Sommer
Jakob Robnik
Giorgi Nozadze
U. Seljak
David Rügamer
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks"
17 / 17 papers shown
Title
Paths and Ambient Spaces in Neural Loss Landscapes
Daniel Dold
Julius Kobialka
Nicolai Palm
Emanuel Sommer
David Rügamer
Oliver Durr
AI4CE
101
0
0
05 Mar 2025
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
62
16
0
16 Feb 2024
Focusing on Difficult Directions for Learning HMC Trajectory Lengths
Pavel Sountsov
Matt Hoffman
61
10
0
22 Oct 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
60
20
0
02 Aug 2021
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
67
385
0
29 Apr 2021
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
99
140
0
12 Feb 2021
A Bayesian neural network predicts the dissolution of compact planetary systems
M. Cranmer
Daniel Tamayo
H. Rein
Peter W. Battaglia
S. Hadden
P. Armitage
S. Ho
D. Spergel
BDL
81
27
0
11 Jan 2021
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
63
76
0
14 Oct 2020
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
62
144
0
17 Jul 2019
Rank-normalization, folding, and localization: An improved
R
^
\widehat{R}
R
for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
37
930
0
19 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
74
276
0
11 Feb 2019
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
193
632
0
01 Jul 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
268
8,876
0
25 Aug 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
670
131,414
0
12 Jun 2017
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,280
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
162
4,297
0
18 Nov 2011
Elliptical slice sampling
Iain Murray
Ryan P. Adams
D. MacKay
124
465
0
31 Dec 2009
1