ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.01618
  4. Cited By
A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods

A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods

3 February 2025
Isha Puri
Shivchander Sudalairaj
Guangxuan Xu
Kai Xu
Akash Srivastava
    LRM
ArXivPDFHTML

Papers citing "A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods"

8 / 8 papers shown
Title
Learning Extrapolative Sequence Transformations from Markov Chains
Learning Extrapolative Sequence Transformations from Markov Chains
Sophia Hager
Aleem Khan
Andrew Wang
Nicholas Andrews
BDL
12
0
0
26 May 2025
Token-Level Uncertainty Estimation for Large Language Model Reasoning
Tunyu Zhang
Haizhou Shi
Yibin Wang
Hengyi Wang
Xiaoxiao He
...
Ligong Han
Kai Xu
Huatian Zhang
Dimitris N. Metaxas
Hao Wang
LRM
47
0
0
16 May 2025
Soft Best-of-n Sampling for Model Alignment
Soft Best-of-n Sampling for Model Alignment
C. M. Verdun
Alex Oesterling
Himabindu Lakkaraju
Flavio du Pin Calmon
BDL
340
0
0
06 May 2025
Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
João Loula
Benjamin LeBrun
Li Du
Ben Lipkin
Clemente Pasti
...
Ryan Cotterel
Vikash K. Mansinghka
Alexander K. Lew
Tim Vieira
Timothy J. O'Donnell
71
4
0
17 Apr 2025
Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
Benjamin Lipkin
Benjamin LeBrun
Jacob Hoover Vigly
João Loula
David R. MacIver
...
Ryan Cotterell
Vikash K. Mansinghka
Timothy J. O'Donnell
Alexander K. Lew
Tim Vieira
53
0
0
07 Apr 2025
Scaling LLM Test-Time Compute Optimally can be More Effective than
  Scaling Model Parameters
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Charlie Snell
Jaehoon Lee
Kelvin Xu
Aviral Kumar
LRM
95
576
0
06 Aug 2024
Advancing LLM Reasoning Generalists with Preference Trees
Advancing LLM Reasoning Generalists with Preference Trees
Lifan Yuan
Ganqu Cui
Hanbin Wang
Ning Ding
Xingyao Wang
...
Zhenghao Liu
Bowen Zhou
Hao Peng
Zhiyuan Liu
Maosong Sun
LRM
82
109
0
02 Apr 2024
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
430
4,662
0
23 Jan 2020
1