ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.18277
  4. Cited By
Sebra: Debiasing Through Self-Guided Bias Ranking

Sebra: Debiasing Through Self-Guided Bias Ranking

30 January 2025
Adarsh Kappiyath
Abhra Chaudhuri
Ajay Jaiswal
Ziquan Liu
Yunpeng Li
Xiatian Zhu
L. Yin
    CML
ArXiv (abs)PDFHTML

Papers citing "Sebra: Debiasing Through Self-Guided Bias Ranking"

23 / 23 papers shown
Title
AIM-Fair: Advancing Algorithmic Fairness via Selectively Fine-Tuning Biased Models with Contextual Synthetic Data
Zengqun Zhao
Ziquan Liu
Yu Cao
Shaogang Gong
Ioannis Patras
100
0
0
07 Mar 2025
Identifying Spurious Biases Early in Training through the Lens of
  Simplicity Bias
Identifying Spurious Biases Early in Training through the Lens of Simplicity Bias
Yu Yang
Eric Gan
Gintare Karolina Dziugaite
Baharan Mirzasoleiman
81
28
0
30 May 2023
Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
  Chamber
Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo Chamber
Rui Hu
Yahan Tu
Jitao Sang
82
2
0
06 May 2023
Change is Hard: A Closer Look at Subpopulation Shift
Change is Hard: A Closer Look at Subpopulation Shift
Yuzhe Yang
Haoran Zhang
Dina Katabi
Marzyeh Ghassemi
OOD
74
107
0
23 Feb 2023
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve
Rishabh Tiwari
Pradeep Shenoy
148
22
0
30 Jan 2023
A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One
  Amplifies Others
A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
Zhiheng Li
Ivan Evtimov
Albert Gordo
C. Hazirbas
Tal Hassner
Cristian Canton Ferrer
Chenliang Xu
Mark Ibrahim
86
78
0
09 Dec 2022
Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases
Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases
Mazda Moayeri
Wenxiao Wang
Sahil Singla
Soheil Feizi
169
16
0
05 Dec 2022
Training Debiased Subnetworks with Contrastive Weight Pruning
Training Debiased Subnetworks with Contrastive Weight Pruning
Geon Yeong Park
Sangmin Lee
Sang Wan Lee
Jong Chul Ye
CML
108
14
0
11 Oct 2022
Discover and Mitigate Unknown Biases with Debiasing Alternate Networks
Discover and Mitigate Unknown Biases with Debiasing Alternate Networks
Zhiheng Li
A. Hoogs
Chenliang Xu
83
56
0
20 Jul 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
125
339
0
06 Apr 2022
ZIN: When and How to Learn Invariance Without Environment Partition?
ZIN: When and How to Learn Invariance Without Environment Partition?
Yong Lin
Shengyu Zhu
Lu Tan
Peng Cui
OODCML
88
69
0
11 Mar 2022
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
  via Generative Bias-transformation
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation
Yeonsung Jung
Hajin Shim
J. Yang
Eunho Yang
96
8
0
02 Dec 2021
Simple data balancing achieves competitive worst-group-accuracy
Simple data balancing achieves competitive worst-group-accuracy
Badr Youbi Idrissi
Martín Arjovsky
Mohammad Pezeshki
David Lopez-Paz
120
183
0
27 Oct 2021
Salient ImageNet: How to discover spurious features in Deep Learning?
Salient ImageNet: How to discover spurious features in Deep Learning?
Sahil Singla
Soheil Feizi
AAMLVLM
121
120
0
08 Oct 2021
Just Train Twice: Improving Group Robustness without Training Group
  Information
Just Train Twice: Improving Group Robustness without Training Group Information
Emmy Liu
Behzad Haghgoo
Annie S. Chen
Aditi Raghunathan
Pang Wei Koh
Shiori Sagawa
Percy Liang
Chelsea Finn
OOD
118
563
0
19 Jul 2021
Towards Robust Classification Model by Counterfactual and Invariant Data
  Generation
Towards Robust Classification Model by Counterfactual and Invariant Data Generation
C. Chang
George Adam
Anna Goldenberg
OODCML
66
32
0
02 Jun 2021
The Low-Rank Simplicity Bias in Deep Networks
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
117
116
0
18 Mar 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
337
1,452
0
14 Dec 2020
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained
  Classification Problems
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
90
252
0
25 Nov 2020
Learning from Failure: Training Debiased Classifier from Biased
  Classifier
Learning from Failure: Training Debiased Classifier from Biased Classifier
J. Nam
Hyuntak Cha
SungSoo Ahn
Jaeho Lee
Jinwoo Shin
84
150
0
06 Jul 2020
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
232
2,682
0
29 Nov 2018
A Broad-Coverage Challenge Corpus for Sentence Understanding through
  Inference
A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
Adina Williams
Nikita Nangia
Samuel R. Bowman
624
4,505
0
18 Apr 2017
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
278
8,454
0
28 Nov 2014
1