Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
2501.16055
Cited By
Random Reshuffling for Stochastic Gradient Langevin Dynamics
28 January 2025
Luke Shaw
Peter A. Whalley
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Random Reshuffling for Stochastic Gradient Langevin Dynamics"
27 / 27 papers shown
Title
A Langevin sampling algorithm inspired by the Adam optimizer
Benedict Leimkuhler
René Lohmann
Peter Whalley
178
0
0
26 Apr 2025
Randomised Splitting Methods and Stochastic Gradient Descent
Luke Shaw
Peter A. Whalley
108
1
0
05 Apr 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
Peter Whalley
Neil K. Chada
Benedict Leimkuhler
BDL
130
4
0
14 Oct 2024
Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
Jaeyoung Cha
Jaewook Lee
Chulhee Yun
95
24
0
13 Mar 2023
Contraction and Convergence Rates for Discretized Kinetic Langevin Dynamics
Benedict Leimkuhler
Daniel Paulin
Peter Whalley
152
17
0
21 Feb 2023
Split Hamiltonian Monte Carlo revisited
F. Casas
J. Sanz-Serna
Luke Shaw
127
9
0
15 Jul 2022
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
96
29
0
08 Sep 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
90
21
0
02 Aug 2021
Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations
J. Sanz-Serna
K. Zygalakis
79
23
0
26 Apr 2021
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
140
135
0
10 Jun 2020
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
114
47
0
04 Oct 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
83
139
0
16 Jul 2019
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
120
383
0
27 Jan 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
91
78
0
25 Nov 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
81
75
0
21 Aug 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
90
87
0
15 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
166
298
0
29 Sep 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
95
205
0
20 Jul 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
102
101
0
16 Jun 2017
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
73
175
0
16 Apr 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
88
521
0
13 Feb 2017
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
184
358
0
05 May 2016
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
140
415
0
17 Jul 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
146
916
0
17 Feb 2014
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
98
306
0
27 Jun 2012
Practical recommendations for gradient-based training of deep architectures
Yoshua Bengio
3DH
ODL
233
2,208
0
24 Jun 2012
MCMC using Hamiltonian dynamics
Radford M. Neal
377
3,287
0
09 Jun 2012
1