ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.16055
  4. Cited By

Random Reshuffling for Stochastic Gradient Langevin Dynamics

28 January 2025
Luke Shaw
Peter A. Whalley
ArXiv (abs)PDFHTML

Papers citing "Random Reshuffling for Stochastic Gradient Langevin Dynamics"

27 / 27 papers shown
Title
A Langevin sampling algorithm inspired by the Adam optimizer
A Langevin sampling algorithm inspired by the Adam optimizer
Benedict Leimkuhler
René Lohmann
Peter Whalley
178
0
0
26 Apr 2025
Randomised Splitting Methods and Stochastic Gradient Descent
Randomised Splitting Methods and Stochastic Gradient Descent
Luke Shaw
Peter A. Whalley
108
1
0
05 Apr 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
Peter Whalley
Neil K. Chada
Benedict Leimkuhler
BDL
130
4
0
14 Oct 2024
Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
Jaeyoung Cha
Jaewook Lee
Chulhee Yun
95
24
0
13 Mar 2023
Contraction and Convergence Rates for Discretized Kinetic Langevin
  Dynamics
Contraction and Convergence Rates for Discretized Kinetic Langevin Dynamics
Benedict Leimkuhler
Daniel Paulin
Peter Whalley
152
17
0
21 Feb 2023
Split Hamiltonian Monte Carlo revisited
Split Hamiltonian Monte Carlo revisited
F. Casas
J. Sanz-Serna
Luke Shaw
127
9
0
15 Jul 2022
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
96
29
0
08 Sep 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high
  dimension
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
90
21
0
02 Aug 2021
Wasserstein distance estimates for the distributions of numerical
  approximations to ergodic stochastic differential equations
Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations
J. Sanz-Serna
K. Zygalakis
79
23
0
26 Apr 2021
Random Reshuffling: Simple Analysis with Vast Improvements
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
140
135
0
10 Jun 2020
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
114
47
0
04 Oct 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
83
139
0
16 Jul 2019
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
120
383
0
27 Jan 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
91
78
0
25 Nov 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
81
75
0
21 Aug 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
90
87
0
15 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
166
298
0
29 Sep 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
95
205
0
20 Jul 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
102
101
0
16 Jun 2017
Further and stronger analogy between sampling and optimization: Langevin
  Monte Carlo and gradient descent
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
73
175
0
16 Apr 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
88
521
0
13 Feb 2017
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
184
358
0
05 May 2016
Non-asymptotic convergence analysis for the Unadjusted Langevin
  Algorithm
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
140
415
0
17 Jul 2015
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
146
916
0
17 Feb 2014
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
98
306
0
27 Jun 2012
Practical recommendations for gradient-based training of deep
  architectures
Practical recommendations for gradient-based training of deep architectures
Yoshua Bengio
3DHODL
233
2,208
0
24 Jun 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
377
3,287
0
09 Jun 2012
1