Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2501.13133
Cited By
Graph Representation Learning with Diffusion Generative Models
22 January 2025
Daniel Wesego
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Graph Representation Learning with Diffusion Generative Models"
19 / 19 papers shown
Title
Large Generative Graph Models
Yu Wang
Ryan Rossi
Namyong Park
Huiyuan Chen
Nesreen K. Ahmed
Puja Trivedi
Franck Dernoncourt
Danai Koutra
Hanyu Wang
AI4CE
95
4
0
07 Jun 2024
Directional diffusion models for graph representation learning
Run Yang
Yuling Yang
Fan Zhou
Qiang Sun
DiffM
42
14
0
22 Jun 2023
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling
Xiaohui Chen
Jiaxing He
Xuhong Han
Liping Liu
DiffM
75
55
0
06 May 2023
Learning Dynamic Graph Embeddings with Neural Controlled Differential Equations
Tiexin Qin
Benjamin Walker
Terry Lyons
Hongfei Yan
Haoliang Li
BDL
AI4CE
51
3
0
22 Feb 2023
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
508
15,788
0
20 Dec 2021
Diffusion Autoencoders: Toward a Meaningful and Decodable Representation
Konpat Preechakul
Nattanat Chatthee
Suttisak Wizadwongsa
Supasorn Suwajanakorn
SyDa
DiffM
121
434
0
30 Nov 2021
Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob Austin
Daniel D. Johnson
Jonathan Ho
Daniel Tarlow
Rianne van den Berg
DiffM
194
948
0
07 Jul 2021
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
306
7,958
0
11 May 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
297
426
0
10 Feb 2021
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
245
828
0
16 Jul 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
759
18,408
0
19 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
544
10,591
0
17 Feb 2020
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Rex Ying
Ruining He
Kaifeng Chen
Pong Eksombatchai
William L. Hamilton
J. Leskovec
GNN
BDL
272
3,555
0
06 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
359
1,372
0
12 Feb 2018
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
484
20,265
0
30 Oct 2017
Representation Learning on Graphs: Methods and Applications
William L. Hamilton
Rex Ying
J. Leskovec
GNN
196
1,980
0
17 Sep 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
805
132,725
0
12 Jun 2017
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
155
3,595
0
21 Nov 2016
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
286
12,467
0
24 Jun 2012
1